User Manual
Table Of Contents
- 1 Legal disclaimer
- 2 Warnings & Cautions
- 3 Notice to user
- 4 Customer help
- 5 Quick Start Guide
- 6 Parts lists
- 7 A note about ergonomics
- 8 Camera parts
- 9 Screen elements
- 10 Navigating the menu system
- 11 External devices and storage media
- 12 Pairing Bluetooth devices
- 13 Configuring Wi-Fi
- 14 Fetching data from external Extech meters
- 15 Handling the camera
- 15.1 Charging the battery
- 15.2 Inserting the battery
- 15.3 Removing the battery
- 15.4 Turning on and turning off the camera
- 15.5 Adjusting the angle of lens
- 15.6 Mounting an additional lens
- 15.7 Removing an additional infrared lens
- 15.8 Attaching the sunshield
- 15.9 Using the laser pointer
- 15.10 Calibrating the compass
- 15.11 Calibrating the touchscreen LCD
- 16 Working with images and folders
- 17 Working with fusion
- 18 Working with video
- 19 Working with measurement tools and isotherms
- 20 Annotating images
- 21 Programming the camera
- 22 Changing settings
- 23 Cleaning the camera
- 24 Technical data
- 25 Pin configurations
- 26 Dimensions
- 27 Application examples
- 28 About Flir Systems
- 29 Glossary
- 30 Thermographic measurement techniques
- 31 History of infrared technology
- 32 Theory of thermography
- 33 The measurement formula
- 34 Emissivity tables
History of infrared technology
31
Before the year 1800, the existence of the infrared portion of the electromagnetic spec-
trum wasn't even suspected. The original significance of the infrared spectrum, or simply
‘the infrared’ as it is often called, as a form of heat radiation is perhaps less obvious today
than it was at the time of its discovery by Herschel in 1800.
Figure 31.1 Sir William Herschel (1738–1822)
The discovery was made accidentally during the search for a new optical material. Sir Wil-
liam Herschel – Royal Astronomer to King George III of England, and already famous for
his discovery of the planet Uranus – was searching for an optical filter material to reduce
the brightness of the sun’s image in telescopes during solar observations. While testing
different samples of colored glass which gave similar reductions in brightness he was in-
trigued to find that some of the samples passed very little of the sun’s heat, while others
passed so much heat that he risked eye damage after only a few seconds’ observation.
Herschel was soon convinced of the necessity of setting up a systematic experiment, with
the objective of finding a single material that would give the desired reduction in bright-
ness as well as the maximum reduction in heat. He began the experiment by actually re-
peating Newton’s prism experiment, but looking for the heating effect rather than the
visual distribution of intensity in the spectrum. He first blackened the bulb of a sensitive
mercury-in-glass thermometer with ink, and with this as his radiation detector he pro-
ceeded to test the heating effect of the various colors of the spectrum formed on the top
of a table by passing sunlight through a glass prism. Other thermometers, placed outside
the sun’s rays, served as controls.
As the blackened thermometer was moved slowly along the colors of the spectrum, the
temperature readings showed a steady increase from the violet end to the red end. This
was not entirely unexpected, since the Italian researcher, Landriani, in a similar experi-
ment in 1777 had observed much the same effect. It was Herschel, however, who was the
first to recognize that there must be a point where the heating effect reaches a maximum,
and that measurements confined to the visible portion of the spectrum failed to locate this
point.
Figure 31.2 Marsilio Landriani (1746–1815)
Moving the thermometer into the dark region beyond the red end of the spectrum, Her-
schel confirmed that the heating continued to increase. The maximum point, when he
found it, lay well beyond the red end – in what is known today as the ‘infrared
wavelengths’.
#T559772; r.5948/5948; en-US
86










