Wiring Diagram

ELECTRONIC OVEN CONTROL (EOC) FAULT CODE DESCRIPTIONS
Fault
Code
Description of Error Code Suggested Corrective Action
F01 F02
F04 F05
Touch panel failure Disconnect power, wait 30 seconds and reapply power. If fault returns upon power-up replace the touch panel.
F03 The oven user interface board is incorrectly
congured.
Replace the oven user interface board. Make sure you install the latest revision available for this model.
F10 Oven temperature runaway: the cavity tem-
perature has been detected in excess of the
maximum safe operating temperature.
1. If oven is overheating, disconnect power. Check oven temperature probe (RTD) and replace if necessary.
2. If the oven temperature probe is good and if oven continues to overheat when power is reapplied, replace the oven relay board.
F11 Stuck key: a key has been detected has pressed
continuously for 30 seconds or more.
1. If a key was pressed inadvertently for a long time this error code will be displayed. Make sure there is nothing (water, utensils) in contact with
the keyboard. The fault code should go away once the key is released and the Stop key is pressed. If the F011 error comes back when a key is
pressed it means the error condition is still there. If the F011 error does not come back it means the error condition is gone and the oven can be
used.
2. If the fault code cannot be cleared, test the wiring harness between oven user interface board (connector I2C1 or I2C2) and touch panel (connec-
tor I2C1 or I2C2).
3. If the fault code cannot be cleared and the wiring is good, the touch panel is most likely defective: replace the touch panel.
4. If changing the touch panel did not x the problem replace the oven user interface board.
F12 Keyboard conguration alarm: the oven user
interface board received from the touch panel a
key code that does not match the key map.
1. Verify the unit has the proper oven user interface board and touch panel, based on the model number and parts catalog.
2. Replace the oven user interface board.
3. If the problem persists replace the touch panel.
F13 Data written to non-volatile memory has failed
verication
Disconnect power, wait 30 seconds and reapply power. If fault returns upon power-up replace the oven user interface.
F15 Keyboard error Disconnect power, wait 30 seconds and reapply power. If fault returns upon power-up replace the touch panel.
F17 The oven user interface board is unable to
congure the touch panel.
1. Disconnect power to the unit, wait 30 seconds, then reapply power.
2. If fault returns, verify harness going to I2C1 or I2C2 connector of the touch panel.
3. Verify the unit has the proper oven user interface board and touch panel, based on the model number and parts catalog.
4. If fault persists, replace the oven user interface.
5. If fault persists, replace the touch panel.
F18 Oven relay board failure (wiggler) Replace the oven relay board.
F19 The oven user interface board is unable to
congure the oven relay board
1. Disconnect power to the unit, wait 30 seconds, then reapply power.
2. If fault returns, verify connection between the oven user interface board (MACS1 or MACS2 connector) and the oven relay board (connector J3
or J4).
3. Verify the unit has the proper oven user interface board and oven relay board, based on the model number and parts catalog.
4. If fault persists, replace oven user interface board.
5. If fault persists, replace the relay board.
F22 Communication failure between the oven user
interface board and the oven relay board
1. Disconnect power, wait 30 seconds and reapply power. Check if error condition is still there.
2. Test wiring harness between oven user interface board (connector MACS1 or MACS2) and oven relay board (connector J3 or J4).
3. If wiring harness is good replace oven relay board.
4. If the problem persists replace the oven user interface.
F23 Communication failure between the oven user
interface board and the glass touch panel
1. Disconnect power, wait 30 seconds and reapply power. Check if error condition is still there.
2. Test wiring harness between oven user interface board (connector I2C1 or I2C2) and touch panel (connector I2C1 or I2C2).
3. If wiring harness is good replace touch panel.
4. If the problem persists replace the oven user interface.
F25
F27
The communication between the over user
interface and the oven relay board cannot be
initiated.
1. Disconnect power to the unit, wait 30 seconds, then reapply power.
2. If fault returns, verify connection between the oven user interface board (MACS1 or MACS2 connector) and the oven relay board (connector J3
or J4).
3. Verify the unit has the proper oven user interface board and oven relay board, based on the model number and parts catalog.
4. If fault persists, replace relay board.
5. If fault persists, replace the oven user interface board.
F28
F29
The communication between the over user inter-
face and the touch panel cannot be initiated.
1. Disconnect power to the unit, wait 30 seconds, then reapply power.
2. If fault returns, verify touch panel is connected (verify harness going to I2C1 or I2C2 connector) and is getting power from the oven user interface.
3. Verify the unit has the proper oven user interface board and touch panel, based on the model number and parts catalog.
4. If fault persists, replace the touch panel.
5. If fault persists, replace the oven user interface.
F30 Open oven temperature sensor (RTD) 1. Check probe circuit wiring for possible open or short condition.
2. Verify RTD resistance at room temperature (compare to probe resistance chart). If resistance does not match the chart, replace the RTD probe.
3. If the problem persists replace the oven relay board.
F31 Shorted oven temperature probe (RTD)
F33 Meat probe temperature sensor shorted or too
hot
1. The error is triggered if the meat probe sees a temperature in excess of 392°F. Make sure the meat probe was not used in such way that it could
have seen such temperature. If the tip of the probe is not inserted in the meat it will see the cavity temperature, which can be higher than 392°F
(depending on the setpoint) and trigger the alarm.
2. When the meat probe is connected to the socket inside the oven cavity, if the meat probe is not fully inserted into the socket it may short the
contacts and cause the error. Make sure the probe is inserted as much as it can.
3. Verify meat probe resistance at room temperature. Compare to meat probe resistance chart. If the meat probe does not match the chart, replace
it.
4. If the above steps failed to correct the problem, replace the oven relay board.
F45 Cooling fan speed too low. 1. Check if the cooling fan blades are blocked.
2. Conrm tachometer harness is connected on fan and on oven control.
3. Replace cooling fan.
4. Replace oven control.
F46 Cooling fan speed too high. 1. Check for mechanical obstruction in the air path.
2. Replace cooling fan.
3. Replace oven control.
F50 A/D Out of Range: the oven relay board is unable
to read the status of the switches (door, MDL)
1. Check to ensure that the connections between the door switch, MDL and temp probes are properly connected. This includes all splices and
junctions.
2. If the above step failed to correct the problem, replace the oven relay board.
F90 Motor Door Lock mechanism failure. The oven
control does not see the Motor Door Lock
running.
1. Disconnect power to the unit, wait 30 seconds, then reapply power. Try again to make the door lock or unlock (ex: initiate a Lockout or a Clean
cycle).
2. Check if the Lock Motor is running or not. If it is not running, test the wiring between the Lock Motor and the oven relay board. If the wiring is
good, check if there is 120VAC at the motor when it is expected to run to see if the failure originates from a bad motor (120VAC present but not
turning) or a problem with the relay board (J20 pin 10 on the oven relay board is the output to the Lock Motor). The Lock Motor can also be test-
ed by applying 120VAC directly to the motor (unplug it from the relay board rst). If the Lock Motor does not run when 120VAC is applied replace
the Lock Motor Assembly. If it is the relay board that does not provide 120VAC to the Lock Motor replace the oven relay board.
3. If the Lock Motor is running but the oven control cannot nd the locked or unlocked position (ex: motor turns continuously until F90 fault code
is generated) the Lock Switch needs to be veried. Check wiring between Lock Switch and oven relay board. Verify with ohmmeter if the switch
makes contact properly (verify continuity with ohmmeter when the switch is pressed). If the Lock Switch is defective replace the Motor Lock
Assembly.
4. If all above steps failed to correct the situation, replace the oven relay board.
F95 Motor Door Lock mechanism failure. The Motor
Door Lock does not stop running or the Lock
Switch sends an invalid signal.
1. The problem can be caused by a faulty Lock Switch or by a defective oven relay board. If the Motor Door Lock is always running (as if the relay
controlling it is stuck closed) replace the oven relay board.
2. If the motor is not always running replace the Motor Lock Assembly.
F96 The oven door has been detected open during a
Self Clean cycle.
1. This error occurs if the door switch has lost its contact during a Self Clean cycle. Make sure the oven door closes well and fully presses on the
door switch plunger when the door is locked, and no one attempted to pull on the oven door during the Self Clean cycle.
2. Test continuity of wiring between the door switch and the oven relay board, make sure the door switch is well connected. With an ohmmeter,
verify the switch is closed when the plunger is pressed. If the door switch is found to be defective replace the door switch.
3. If the switch and wiring are good and the problem persists, replace the oven relay board.
ELECTRONIC OVEN CONTROL (EOC) FAULT CODE DESCRIPTIONS
Fault
Code
Description of Error Code Suggested Corrective Action
CIRCUIT ANALYSIS
MATRIX
Elements
Door Motor
J20-10 (K13)
Light
J20-6 (K9)
Conv. Fan
Low J20-9 (K12)
High J19-3 (K6)
Door
Switch
J5-7, J5-9
DLB L2
out (K1)
Cooling Fan
Low J20-7 (K10)
High J20-8 (K11)
Catalyst
“Air Guard”
J19-2 (K5)
Bake
P7 (K3)
Broil
K2
Conv.
P8 (K6)
Bake X X X X X X X
Broil X X X
Conv. Bake X X X X X X X
Conv. Roast X X X X X X X
Clean X X X X X X
Locking X
Locked
Unlocking X
Unlocked
Light X
Door Open X X
Door Closed
Air Guard
(with key press)
X X X
X
NOTES: Bake, broil, and convection elements alternate cycles. Convection fans may run during preheat and may run intermittently during non-convection functions to improve cooking performance.
Modular Control Systems
This appliance is equipped with a modular system of controls. The modular
system consists of various boards which communicate with one another to drive
cooking functions. Oven functions, if available, operate through an oven user
interface (UI or UIB) and an oven relay board. Cooktop functions, if available,
operate through a cooktop UI/UIB and a cooktop relay board. There may be addi-
tional boards which work within the system to drive specic functions (refer to the
schematics and diagrams and this sheet). Low voltage operating and communica-
tions power for the modular boards is provided through the wiring schemes. The
boards that generate low voltage operating and communications power depend
upon the individual control system (refer to the schematics and diagrams on
this sheet). These voltages are only the operational voltages. Do not use these
voltages as conrmation of communication between the boards. Communication
occurs through software programming on each board. This communication is not
detectable by volt ohmmeters. The programming is self-monitored and the UI
displays will show error codes based on detected failures. The individual boards
are not eld repairable. See the schematics and diagrams included on this sheet
for more unit-specic details.
OVEN CONTROL
RELAY BOARD
(OVC)
TOUCH PANEL
(BENDER HMI)
OVEN CONTROL
(MARS)
MACS
I2C
Resistance (ohms)
1000 ± 4.0
1091 ± 5.3
1453 ± 8.9
1654 ± 10.8
1852 ± 13.5
2047 ± 15.8
2237 ± 18.5
2697 ± 24.4
Open circuit/infinite resistance
RTD SCALE
Temperature °F (°C)
32 ± 1.9 (0 ± 1.0)
75 ± 2.5 (24 ± 1.3)
250 ± 4.4 (121 ± 2.4)
350 ± 5.4 (177 ± 3.0)
450 ± 6.9 (232 ± 3.8)
550 ± 8.2 (288 ± 4.5)
650 ± 9.6 (343 ± 5.3)
900 ± 13.6 (482 ±7.5)
Probe circuit to case ground
MEAT PROBE TEMPERATURE VS RESISTANCE
Temperature °F (°C) Resistance (Kohm)
77 (25) 50.0 ± 7%
122 (50) 18.0 ± 4.9%
176 (80) 6.3 ± 3.3%
212 (100) 3.4 ± 4.6%