User's Manual

Note: the standard P and D values should cause the gyros to correct the model’s attitude quickly when
it is upset by an outside inuence, without causing oscillation, but in practice the optimum values for a
particular model can only be found by ight-testing. If the model displays little or no automatic stabilisation
with the default settings, the value should be raised; on the other hand, if the model oscillates (wave-like
movements in ight), the value should be reduced.
If your transmitter has spare proportional controls, you can use them to adjust the values while the
model is ying.
Some transmitters allow the corrective factors to be altered during a ight using the proportional controls,
whereas others allow xed values only.
4.2 Programming the factors
4.2.1 Programming, transmitter with proportional controls
If your HoTT transmitter is equipped with proportional controls, it is also possible to adjust the P and
D factors for each axis during a ight: what you might call ‘ying the settings’. You need to assign
proportional controls (e.g. the sliders on the mc-20) to any channel in the range 5 to 16 (in this example
channel 9); now you can alter the P factor (and the D factor) using these controls. In each case the
current values are shown in brackets.
Procedure, using the ailerons as an example:
• Move the cursor to the appropriate line, in this case “Ail” for
aileron.
• Press the SET button to activate the Channel eld.
• Select the appropriate channel, and save the setting with
pressing the SET button again
• move the corresponding proportional control to alter the factor
(adjustment range 0 - 10; 0 means no gyro correction for that
axis).
• You can also adopt this factor directly by pressing the left
button < or the right button >. This frees up the channel previously occupied by the proportional
control, so that it can be used for some other purpose, e.g. for elevator or rudder.
• Move on to elevator and / or rudder, and select the channel and factor (you can either select the
same channel, in order to alter all the axes simultaneously, or different channels, allowing you to
program the axes individually).
• Move the cursor to the Factor line, where you can also change the P factor for aileron, elevator
and rudder with priority (adjustment range up to 200%).
• Move the cursor to the D factor line, where you can alter the D factor for aileron, elevator and
rudder with priority using a proportional control (adjustment range up to 200%; channel value
-100% equates to a factor of 0%, channel value 0% equates to 100%, and +100% equates to
200%). This makes it a very easy matter to match the gyro’s corrective effect to the model’s
airspeed. In particular, higher gyro gain can be used for the landing approach - without the need
to switch ight phases.
• Now test-y your model and ne-tune the values one by one until your preferred stabilising effect
is achieved without the model oscillating.
• It may be sensible or easier to activate the gyro for one axis only at rst, and then to establish the
optimum setting for that axis, rather than for several axes simultaneously.
GYRO SETTINGS < >
>AILERON:
>ELEVATOR:
>RUDDER:
COEFF.:
COEFF. D:
(2)K9
(3)K8
6
(44%)K10
(140%)K11
13Manual Receiver GR-12+ 3xG Graupner HoTT 2.4