Installation Guide

KB-TZ2 expansion anchor technical supplement
13
December 2020
Table 18 — Hilti Stainless Steel KB-TZ2 design strength based on steel failure per ACI 318-14 Ch. 17
1,2
Nominal anchor
diameter
in.
Effective
embedment
depth
in. (mm)
Tensile
3
ФN
sa
lb (kN)
Shear
4
ФV
sa
lb (kN)
Seismic Shear
5
ФV
sa
lb (kN)
1/4
1-1/2 2,19 0 950 720
(38) (9.7) (4.2) (3.2)
3/8
1-1/2 4,635 3,000 3,000
(38) (20.6) (13.3) (13.3)
3/8
2 2-1/2 4,635 3,175 3,175
(51) (64) (20.6) (14.1) (14.1)
1/2
2 2-1/2 3-1/4 8,905 5,425 5,425
(51) (64) (83) (39.6) (24.1) (24.1)
5/8
2-3/4 3-1/4 4 14,125 8,030 8,030
(70) (83) (102) (62.8) (35.7) (35.7)
3/4
3-1/4 3-3/4 4-3/4 18,035 10,765 8,755
(83) (95) (121) (80.2) (47.9 ) (38.9)
1 See PTG 19 Section 3.1.8 to convert design strength value to ASD value.
2 Hilti KB-TZ2 stainless steel anchors are to be considered ductile steel elements.
3 Tensile фN
sa
= ф A
se,N
f
uta
as noted in ACI 318 Ch. 17.
4 Shear values determined by static shear tests with фV
sa
< ф 0.60 A
se ,V
f
uta
as noted in ACI 318 Ch. 17.
5 Seismic shear values determined by seismic shear tests with фV
sa
≤ ф 0.60 A
se ,V
f
uta
as noted in ACI 318 Ch. 17.
See Section 3.1.8 for additional information on seismic applications.
For a specific edge distance,
the permitted spacing is calculated
as follows:
(s
min,1
– s
min,2
)
s s
min,2
+
___________
(cc
min,2
)
(c
min,1
– c
min,2
)
Concrete
Edge
Anchors not permitted
in shaded area
s
min,2
s
min,1
c
min,1
c
min,2
Case 1
Case 2
c
design
edge distance c
c
min,1
at s
min,1
c
min,2
at s
min,2
s
design
spacing s
Figure 2
Figure 3
For a specific edge distance, the permitted spacing is calculated as follows:
(s
min,1
– s
min,2
)
ss
min,2
+
___________
(cc
min,2
)
(c
min,1
– c
min,2
)
Concrete
Edge
Anchors not permitted
in shaded area
s
min,2
s
min,1
c
min,1
c
min,2
Case 1
Case 2
c
design
edge distance c
c
min,1
at s
min,1
c
min,2
at s
min,2
s
design
spacing s
Figure 3
Table 19 — Hilti KB-TZ2 stainless steel installation parameters
1
Setting information Symbol Units
Nominal Anchor diameter (in.)
1/4 3/8 1/2 5/8 3/4
Effective embedment h
ef
in. 1-1/2 1-1/2 2 2-1/2 2 2-1/ 2 3 1/4 2-3/4 3-1/4 4 3-1/4 3-3/4 4-3/4
(mm) (38) (38) (51) (64) (51) (64) (83) (70) (83) (102) (83) (95) (121)
Min. member thickness h
min
in. 3-1/4 3-1/4 4 5 4 5 5-1/2 5 5-1/2 6 5-1/2 6 8
(mm) (83) (83) (102) (127) (102) (127) (140) (127) (140) (152) (140) (152) (203)
Case 1
c
min,1
in. 1-1/2 5 2-1/2 2-1/2 2-3/4 2-1/2 2-1/4 4 3-1/4 2-1/4 5 4 3 3/4
(mm) (38) (127) (64) (64) (70) (64) (57) (102) (83) (57) (127) (102) (95)
for
s
min,1
in. 1-1/2 8 5 5 5-1/2 4-1/ 2 5-1/4 7 5-1/2 7 11 7-1/2 5 3/4
(mm) (38) (203) (127) (127) (140) (114) (133) (178) (140) (178) (279) (191) (146)
Case 2
c
min,2
in. 1-1/2 8 4 3-1/2 4-1/8 5 4-3/4 5-1/2 4 4-1/4 8 6 5-1/4
(mm) (38) (203) (102) (89) (105) (127) (121) (140) (102) (108) (203) (152) (133)
for
s
min,2
in. 1-1/2 5 2-1/4 2-1/4 2-3/4 2-1/2 2 5-1/2 2-3/4 3 5 4 4
(mm) (38) (127) (57) (57) (70) (64) (51) (140) (70) (76) (127) (102) (102)
1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpolation for a specific edge distance c, where c
min,1
< c < c
min,2
,
will determine the permissible spacings.