HAC_Technical-Guide
304 305
Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019
1. Anchor
Channel Systems
2. HAC
Portfolio
3. HAC
Applications
4. Design
Introduction
5. Base material 6. Loading
7. Anchor Channel
Design Code
8. Reinforcing
Bar Anchorage
9. Special Anchor
Channel Design
10. Design
Software
11. Best
Practices
12. Instructions
for Use
13. Field Fixes
14. Design
Example
9.1 Overview of Hilti Anchor Channel Systems Design
9.2 HAC and HAC-T Design 9.3 HAC CRFoS U Design 9.4 & 9.5 Post Tensioned Slabs 9.6 HAC EDGE Design
Concrete breakout strength for parallel shear: The concrete
breakout strength for parallel shear is calculated according ESR
for both channels are verified independently and neglecting
the EDGE front plate. The concrete utilization of both edges is
then combined in conservative way as described in the next
paragraph.
Channel Lip strength: ФV
s,l,x
ФV
s,l,x
> V
aua,x
This check is in accordance to ESR-
3520 Sec. 4.1.3.3.2, 4.1.3.4.2
Please refer table 2.3.18.3 and
2.3.22.3 for strength values.
Channel bolt and channel
lip connection: ФV
s,l,x
Anchor strength: ФV
sa,x
ФV
sa,x
> V
aua,x
This check is in accordance to ESR-
3520 Sec. 4.1.3.3.2, 4.1.3.4.2
Please refer table 2.3.18.1 and
2.3.10.1 for strength values.
Anchor reinforcement
anchorage: ФV
ca
Connection Anchor and Channel : ФV
sc,x
ФV
sc,x
> V
aua
This check is in accordance to ESR-
3520 Sec. 4.1.3.3.2, 4.1.3.4.2
Please refer table 2.3.18.1 and
2.3.10.1 for strength values.
Anchor reinforcement
anchorage: ФV
ca
Concrete pryout strength for shear parallel: ФV
cp,x
ФV
cp,x
> V
aua,x
Please refer to anchor channel theory
for more information on this failure
mode. The design methodology
is same as of headed stud anchor
channel. This check is compliant with
ESR 3520 section 4.1.3.4.4. Refer
Anchor channel theory Section 7.4.4
Anchor reinforcement
anchorage: ФV
ca
Concrete breakout strength for shear parallel: ФV
cb,x
ФV
cb,x
> V
aua,x
Please refer to anchor channel theory
for more information on this failure
mode. The design methodology
is same as of headed stud anchor
channel. This check is compliant with
ESR 3520 section 4.1.3.4.3. Refer
Anchor channel theory Section 7.4.4.
Anchor reinforcement
anchorage: ФV
ca
Required verifications under combined tension and shear loading
If forces act in more than one direction the combination of loads has to be verified. Anchor channels subjected to combined axial
and shear loads shall be designed to satisfy the following requirements by distinguishing between steel failure of the channel bolt,
steel failure modes of the channel and concrete failure modes.
Steel failure of channel bolts under combined loads (ESR-3520)
[ ]
[ ]
bolt channelper loadingshear
undern utilizatiohighest 0.1
.
bolt channelper loadingension t
under n utilizatiohighest 0.1
.
0.1
..
2
,
2
,
,
2
2
,
2
,
2
,
£
÷
÷
ø
ö
ç
ç
è
æ
+
=
£
÷
÷
ø
ö
ç
ç
è
æ
=
£
÷
÷
ø
ö
ç
ç
è
æ
+
+
÷
÷
ø
ö
ç
ç
è
æ
=
+
Vss
VV
N
N
Vss
VV
N
N
xua
s
yua
s
sV
ss
ua
s
Ns
xua
s
yua
s
ss
ua
s
sVN
f
b
f
b
ff
b
highest utlization under tension loading per channel bolt
highest utlization under shear loading per channel bolt
Steel failure modes of rebar channels under combined loads (ESR-3520)
a) For connection between anchor and channel
2
,,
,,
,
,, ,,
max , max , max , 1.0
aa
aa
aa
ua y ua y
ua x ua x
ua ua
N V ac
sa sc sa y sc y sa x sc x
VV
VV
NN
NN V V V V
a
a
b
ff f f f f
+
æö
æö
æö
=+ + £
ç÷
ç÷
ç÷
ç÷
ç÷
èø
èø
èø
,
max , 1.0
aa
ua ua
N ac
sa sc
NN
NN
b
ff
æö
= £
ç÷
èø
,,
,,
,,
max , 1.0
aa
ua y ua y
V ac y
sa y sc y
VV
VV
b
ff
æö
= £
ç÷
ç÷
èø
,,
,,
,,
max , 1.0
aa
ua x ua x
V ac x
sa x sc x
VV
VV
b
ff
æö
= £
ç÷
ç÷
èø
)N ,(Nmin )V ,(Vmax with channelsrebar for 0.1
)N ,(Nmin )V ,(Vmax with channelsrebar for 0.2
:casesother allIn
(seismic) For E,D,C, SDCin loadsshear andsion resist ten tochannelsrebar for 1
rebarper ular)(perpendic loadingshear under n utilizatiohighest 0.1
.
,
.
max
rebar per ular)(perpendic loadingshear under n utilizatiohighest 0.1
.
,
.
max
rebarper loadingion under tensn utilizatiohighest 0.1
.
,
.
max
.
,
.
max0.1
.
,
.
max
.
,
.
max
scsaysc,ysa,
scsaysc,ysa,
,,
,
,,
,
,,
,,
,
,,
,
,,
,,
,
,,
,
,,
,
,,
,
,,
,
,,
,
>=
£=
=
£
÷
÷
ø
ö
ç
ç
è
æ
=
£
÷
÷
ø
ö
ç
ç
è
æ
=
£
÷
÷
ø
ö
ç
ç
è
æ
=
÷
÷
ø
ö
ç
ç
è
æ
÷
÷
ø
ö
ç
ç
è
æ
-£
÷
÷
ø
ö
ç
ç
è
æ
+
÷
÷
ø
ö
ç
ç
è
æ
=
+
a
a
a
ff
b
ff
b
ff
b
ffffff
b
aaa
xRsc
xua
a
xRs
xua
a
xacV
yRsc
yua
a
yRs
yua
a
yacV
Rsc
ua
a
Rs
ua
a
acN
xRsc
xua
a
xRs
xua
a
yRsc
yua
a
yRs
yua
a
Rsc
ua
a
Rs
ua
a
acVN
V
V
V
V
V
V
V
V
N
N
N
N
V
V
V
V
V
V
V
V
N
N
N
N
highest utlization under tension loading per rebar
highest utlization under shear loading (perpendicular) per rebar
highest utlization under shear loading (perpendicular) per rebar
It is permitted to assume reduced values for V
sa,y
and V
sc,y
corresponding to the use of an exponent α = 2. In this case the reduced
values for V
sa,y
and V
sc,y
shall also be used