BLADE OS™ Application Guide HP GbE2c Ethernet Blade Switch for c-Class BladeSystem Version 5.1 Advanced Functionality Software
Table Of Contents
- Contents
- Figures
- Tables
- Preface
- Part 1: Basic Switching
- Accessing the Switch
- The Management Network
- Local Management Using the Console Port
- The Command Line Interface
- Remote Management Access
- Client IP Address Agents
- Securing Access to the Switch
- Setting Allowable Source IP Address Ranges
- RADIUS Authentication and Authorization
- TACACS+ Authentication
- LDAP Authentication and Authorization
- Secure Shell and Secure Copy
- Configuring SSH/SCP Features on the Switch
- Configuring the SCP Administrator Password
- Using SSH and SCP Client Commands
- SSH and SCP Encryption of Management Messages
- Generating RSA Host and Server Keys for SSH Access
- SSH/SCP Integration with Radius Authentication
- SSH/SCP Integration with TACACS+ Authentication
- End User Access Control
- Ports and Trunking
- Port-Based Network Access Control
- VLANs
- Spanning Tree Protocol
- RSTP and MSTP
- Link Layer Discovery Protocol
- Quality of Service
- Accessing the Switch
- Part 2: IP Routing
- Basic IP Routing
- Routing Information Protocol
- IGMP
- OSPF
- OSPF Overview
- OSPF Implementation in BLADE OS
- OSPF Configuration Examples
- Remote Monitoring
- Part 3: High Availability Fundamentals
- High Availability
- Layer 2 Failover
- Server Link Failure Detection
- VRRP Overview
- Failover Methods
- BLADE OS Extensions to VRRP
- Virtual Router Deployment Considerations
- High Availability Configurations
- High Availability
- Part 4: Appendices
- Index

BLADE OS 5.1 Application Guide
BMD00113, September 2009 Chapter 10: Routing Information Protocol 179
RIPv2 in RIPv1 Compatibility Mode
BLADE OS allows you to configure RIPv2 in RIPv1compatibility mode, for using both RIPv2 and
RIPv1 routers within a network. In this mode, the regular routing updates use broadcast UDP data
packet to allow RIPv1 routers to receive those packets. With RIPv1 routers as recipients, the routing
updates have to carry natural or host mask. Hence, it is not a recommended configuration for most
network topologies.
Note – When using both RIPv1 and RIPv2 within a network, use a single subnet mask throughout
the network.
RIP Features
BLADE OS provides the following features to support RIPv1 and RIPv2:
Poison
Simple split horizon in RIP scheme omits routes learned from one neighbor in updates sent to that
neighbor. That is the most common configuration used in RIP, that is setting this Poison to
DISABLE. Split horizon with poisoned reverse includes such routes in updates, but sets their
metrics to 16. The disadvantage of using this feature is the increase of size in the routing updates.
Triggered Updates
Triggered updates are an attempt to speed up convergence. When Triggered Updates is enabled
(/cfg/l3/rip/if <x>/trigg e), whenever a router changes the metric for a route, it sends
update messages almost immediately, without waiting for the regular update interval. It is
recommended to enable Triggered Updates.
Multicast
RIPv2 messages use IP multicast address (224.0.0.9) for periodic broadcasts. Multicast RIPv2
announcements are not processed by RIPv1 routers. IGMP is not needed since these are inter-router
messages which are not forwarded.
To configure RIPv2 in RIPv1 compatibility mode, set multicast to disable, and set version to
both.