R3102-R3103-HP 6600/HSR6600 Routers IP Multicast Configuration Guide
Table Of Contents
- Title Page
- Contents
- Multicast overview
- Configuring IGMP snooping
- Overview
- IGMP snooping configuration task list
- Configuring basic IGMP snooping functions
- Configuring IGMP snooping port functions
- Configuring IGMP snooping querier
- Configuring IGMP snooping proxying
- Configuring IGMP snooping policies
- Configuration prerequisites
- Configuring a multicast group filter
- Configuring multicast source port filtering
- Enabling dropping unknown multicast data
- Enabling IGMP report suppression
- Setting the maximum number of multicast groups that a port can join
- Enabling multicast group replacement
- Setting the 802.1p precedence for IGMP messages
- Enabling the IGMP snooping host tracking function
- Displaying and maintaining IGMP snooping
- IGMP snooping configuration examples
- Troubleshooting IGMP snooping
- Appendix
- Configuring multicast routing and forwarding
- Overview
- Configuration task list
- Enabling IP multicast routing
- Configuring multicast routing and forwarding
- Displaying and maintaining multicast routing and forwarding
- Configuration examples
- Troubleshooting multicast routing and forwarding
- Configuring IGMP
- Overview
- IGMP configuration task list
- Configuring basic IGMP functions
- Adjusting IGMP performance
- Configuring IGMP SSM mapping
- Configuring IGMP proxying
- Displaying and maintaining IGMP
- IGMP configuration examples
- Troubleshooting IGMP
- Configuring PIM
- Overview
- Configuring PIM-DM
- Configuring PIM-SM
- Configuring BIDIR-PIM
- Configuring PIM-SSM
- Configuring common PIM features
- Displaying and maintaining PIM
- PIM configuration examples
- Troubleshooting PIM
- Configuring MSDP
- Overview
- MSDP configuration task list
- Configuring basic MSDP functions
- Configuring an MSDP peer connection
- Configuring SA message related parameters
- Displaying and maintaining MSDP
- MSDP configuration examples
- Troubleshooting MSDP
- Configuring MBGP
- MBGP overview
- Protocols and standards
- MBGP configuration task list
- Configuring basic MBGP functions
- Controlling route advertisement and reception
- Configuration prerequisites
- Configuring MBGP route redistribution
- Configuring default route redistribution into MBGP
- Configuring MBGP route summarization
- Advertising a default route to an IPv4 MBGP peer or peer group
- Configuring outbound MBGP route filtering
- Configuring inbound MBGP route filtering
- Configuring MBGP route dampening
- Configuring MBGP route attributes
- Optimizing MBGP networks
- Configuring a large scale MBGP network
- Displaying and maintaining MBGP
- MBGP configuration example
- Configuring multicast VPN
- Overview
- How MD-VPN works
- Multicast VPN configuration task list
- Configuring MD-VPN
- Configuring BGP MDT
- Specifying the source IP address for multicast across VPNs
- Displaying and maintaining multicast VPN
- Multicast VPN configuration examples
- Troubleshooting MD-VPN
- Configuring IPv6 multicast routing and forwarding
- Overview
- Configuration task list
- Enabling IPv6 multicast routing
- Configuring IPv6 multicast routing and forwarding
- Displaying and maintaining IPv6 multicast routing and forwarding
- IPv6 multicast forwarding over GRE tunnel configuration example
- Troubleshooting abnormal termination of IPv6 multicast data
- Configuring MLD
- Overview
- MLD configuration task list
- Configuring basic MLD functions
- Adjusting MLD performance
- Configuring MLD SSM mapping
- Configuring MLD proxying
- Displaying and maintaining MLD
- MLD configuration examples
- Troubleshooting MLD
- Configuring IPv6 PIM
- Overview
- Configuring IPv6 PIM-DM
- Configuring IPv6 PIM-SM
- Configuring IPv6 BIDIR-PIM
- Configuring IPv6 PIM-SSM
- Configuring common IPv6 PIM features
- Displaying and maintaining IPv6 PIM
- IPv6 PIM configuration examples
- Troubleshooting IPv6 PIM
- Configuring IPv6 MBGP
- Overview
- IPv6 MBGP configuration task list
- Configuring basic IPv6 MBGP functions
- Controlling route distribution and reception
- Configuration prerequisites
- Injecting a local IPv6 MBGP route
- Configuring IPv6 MBGP route redistribution
- Configuring IPv6 MBGP route summarization
- Advertising a default route to a peer or peer group
- Configuring outbound IPv6 MBGP route filtering
- Configuring inbound IPv6 MBGP route filtering
- Configuring IPv6 MBGP route dampening
- Configuring IPv6 MBGP route attributes
- Optimizing IPv6 MBGP networks
- Configuring a large scale IPv6 MBGP network
- Displaying and maintaining IPv6 MBGP
- IPv6 MBGP configuration example
- Configuring PIM snooping
- Configuring multicast VLANs
- Support and other resources
- Index
100
receiver-side DRs. The RP acts as a transfer station for all multicast packets. The whole process involves the
following issues:
• The source-side DR and the RP need to implement complicated encapsulation and de-encapsulation
of multicast packets.
• Multicast packets are delivered along a path that might not be the shortest one.
• An increase in multicast traffic adds a great burden on the RP, increasing the risk of failure.
To solve these issues, PIM-SM allows an RP or the receiver-side DR to initiate a switchover to SPT as
follows:
• The RP initiates a switchover to SPT:
When the RP receives the first multicast packet, it sends an (S, G) join message hop-by-hop toward
the multicast source to establish an SPT between the DR at the source side and the RP. Subsequent
multicast data travels along the established SPT to the RP.
For more information about the SPT switchover initiated by the RP, see "Multicast source
regi
stration."
• The receiver-side DR initiates a switchover to SPT:
When the receiver-side DR receives the first multicast packet, it initiates a switchover to SPT as
follows:
a. The receiver-side DR sends an (S, G) join message hop-by-hop toward the multicast source.
When the join message reaches the source-side DR, all the routers on the path have installed
the (S, G) entry in their forwarding table, establishing an SPT branch.
b. When the multicast packets travel to the router where the RPT and the SPT deviate, the router
drops the multicast packets received from the RPT and sends an RP-bit prune message
hop-by-hop to the RP. After receiving this prune message, the RP sends a prune message
toward the multicast source (suppose only one receiver exists). Thus, SPT switchover is
completed.
c. Multicast data is directly sent from the source to the receivers along the SPT.
PIM-SM builds SPTs through SPT switchover more economically than PIM-DM does through the
flood-and-prune mechanism.
Assert
PIM-SM uses a similar assert mechanism as PIM-DM does. For more information, see "Assert."
BIDIR-PIM overview
In some many-to-many applications, such as multi-side video conference, there might be multiple
receivers interested in multiple multicast sources simultaneously. With PIM-DM or PIM-SM, each router
along the SPT must create an (S, G) entry for each multicast source, consuming a lot of system resources.
BIDIR-PIM addresses the problem. Derived from PIM-SM, BIDIR-PIM builds and maintains bidirectional
RPTs. Each RPT is rooted at an RP and connects multiple multicast sources with multiple receivers. Traffic
from the multicast sources is forwarded through the RPs to the receivers along the bidirectional RPTs. Each
router needs to maintain only one (*, G) multicast routing entry, saving system resources.
BIDIR-PIM is suitable for networks with dense multicast sources and dense receivers.
The operating mechanism of BIDIR-PIM is summarized as follows:
• Neighbor discovery
• RP discovery










