R3102-R3103-HP 6600/HSR6600 Routers IP Multicast Configuration Guide
Table Of Contents
- Title Page
- Contents
- Multicast overview
- Configuring IGMP snooping
- Overview
- IGMP snooping configuration task list
- Configuring basic IGMP snooping functions
- Configuring IGMP snooping port functions
- Configuring IGMP snooping querier
- Configuring IGMP snooping proxying
- Configuring IGMP snooping policies
- Configuration prerequisites
- Configuring a multicast group filter
- Configuring multicast source port filtering
- Enabling dropping unknown multicast data
- Enabling IGMP report suppression
- Setting the maximum number of multicast groups that a port can join
- Enabling multicast group replacement
- Setting the 802.1p precedence for IGMP messages
- Enabling the IGMP snooping host tracking function
- Displaying and maintaining IGMP snooping
- IGMP snooping configuration examples
- Troubleshooting IGMP snooping
- Appendix
- Configuring multicast routing and forwarding
- Overview
- Configuration task list
- Enabling IP multicast routing
- Configuring multicast routing and forwarding
- Displaying and maintaining multicast routing and forwarding
- Configuration examples
- Troubleshooting multicast routing and forwarding
- Configuring IGMP
- Overview
- IGMP configuration task list
- Configuring basic IGMP functions
- Adjusting IGMP performance
- Configuring IGMP SSM mapping
- Configuring IGMP proxying
- Displaying and maintaining IGMP
- IGMP configuration examples
- Troubleshooting IGMP
- Configuring PIM
- Overview
- Configuring PIM-DM
- Configuring PIM-SM
- Configuring BIDIR-PIM
- Configuring PIM-SSM
- Configuring common PIM features
- Displaying and maintaining PIM
- PIM configuration examples
- Troubleshooting PIM
- Configuring MSDP
- Overview
- MSDP configuration task list
- Configuring basic MSDP functions
- Configuring an MSDP peer connection
- Configuring SA message related parameters
- Displaying and maintaining MSDP
- MSDP configuration examples
- Troubleshooting MSDP
- Configuring MBGP
- MBGP overview
- Protocols and standards
- MBGP configuration task list
- Configuring basic MBGP functions
- Controlling route advertisement and reception
- Configuration prerequisites
- Configuring MBGP route redistribution
- Configuring default route redistribution into MBGP
- Configuring MBGP route summarization
- Advertising a default route to an IPv4 MBGP peer or peer group
- Configuring outbound MBGP route filtering
- Configuring inbound MBGP route filtering
- Configuring MBGP route dampening
- Configuring MBGP route attributes
- Optimizing MBGP networks
- Configuring a large scale MBGP network
- Displaying and maintaining MBGP
- MBGP configuration example
- Configuring multicast VPN
- Overview
- How MD-VPN works
- Multicast VPN configuration task list
- Configuring MD-VPN
- Configuring BGP MDT
- Specifying the source IP address for multicast across VPNs
- Displaying and maintaining multicast VPN
- Multicast VPN configuration examples
- Troubleshooting MD-VPN
- Configuring IPv6 multicast routing and forwarding
- Overview
- Configuration task list
- Enabling IPv6 multicast routing
- Configuring IPv6 multicast routing and forwarding
- Displaying and maintaining IPv6 multicast routing and forwarding
- IPv6 multicast forwarding over GRE tunnel configuration example
- Troubleshooting abnormal termination of IPv6 multicast data
- Configuring MLD
- Overview
- MLD configuration task list
- Configuring basic MLD functions
- Adjusting MLD performance
- Configuring MLD SSM mapping
- Configuring MLD proxying
- Displaying and maintaining MLD
- MLD configuration examples
- Troubleshooting MLD
- Configuring IPv6 PIM
- Overview
- Configuring IPv6 PIM-DM
- Configuring IPv6 PIM-SM
- Configuring IPv6 BIDIR-PIM
- Configuring IPv6 PIM-SSM
- Configuring common IPv6 PIM features
- Displaying and maintaining IPv6 PIM
- IPv6 PIM configuration examples
- Troubleshooting IPv6 PIM
- Configuring IPv6 MBGP
- Overview
- IPv6 MBGP configuration task list
- Configuring basic IPv6 MBGP functions
- Controlling route distribution and reception
- Configuration prerequisites
- Injecting a local IPv6 MBGP route
- Configuring IPv6 MBGP route redistribution
- Configuring IPv6 MBGP route summarization
- Advertising a default route to a peer or peer group
- Configuring outbound IPv6 MBGP route filtering
- Configuring inbound IPv6 MBGP route filtering
- Configuring IPv6 MBGP route dampening
- Configuring IPv6 MBGP route attributes
- Optimizing IPv6 MBGP networks
- Configuring a large scale IPv6 MBGP network
- Displaying and maintaining IPv6 MBGP
- IPv6 MBGP configuration example
- Configuring PIM snooping
- Configuring multicast VLANs
- Support and other resources
- Index
310
The assert message contains the multicast source address (S), the multicast group address (G), and
the preference and metric of the IPv6 unicast route/IPv6 MBGP route/IPv6 multicast static route to
the source.
3. The routers compare these parameters, and either Router A or Router B becomes the unique
forwarder of the subsequent (S, G) IPv6 multicast packets on the shared-media subnet. The
comparison process is as follows:
a. The router with a higher preference to the source wins.
b. If both routers have the same preference to the source, the router with a smaller metric to the
source wins.
c. If a tie exists in the route metric to the source, the router with a higher IPv6 link-local address on
the downstream interface wins.
IPv6 PIM-SM overview
IPv6 PIM-DM uses the flood-and-prune principle to build SPTs for IPv6 multicast data distribution.
Although an SPT has the shortest path, it is built with a low efficiency. Therefore the PIM-DM mode is not
suitable for large-sized and medium-sized networks.
IPv6 PIM-SM is a type of sparse-mode IPv6 multicast protocol. It uses the pull mode for IPv6 multicast
forwarding and is suitable for large-sized and medium-sized networks with sparsely and widely
distributed IPv6 multicast group members.
The basic implementation of IPv6 PIM-SM is as follows:
• IPv6 PIM-SM assumes that no hosts need to receive IPv6 multicast data. In the IPv6 PIM-SM mode,
routers must specifically request a particular IPv6 multicast stream before the data is forwarded to
them. The core task for IPv6 PIM-SM to implement IPv6 multicast forwarding will build and maintain
RPTs. An RPT is rooted at a router in the IPv6 PIM domain as the common node, or RP, through which
the IPv6 multicast data travels along the RPT and reaches the receivers.
• When a receiver is interested in the IPv6 multicast data addressed to a specific IPv6 multicast group,
the router connected to this receiver sends a join message to the RP corresponding to that IPv6
multicast group. The path along which the message goes hop-by-hop to the RP forms a branch of the
RPT.
• When an IPv6 multicast source sends IPv6 multicast streams to an IPv6 multicast group, the
source-side DR first registers the multicast source with the RP by sending register messages to the RP
by unicast until it receives a register-stop message from the RP. The arrival of a register message at
the RP triggers the establishment of an SPT. The IPv6 multicast source sends subsequent IPv6
multicast packets along the SPT to the RP. After reaching the RP, the IPv6 multicast packet is
duplicated and delivered to the receivers along the RPT.
IPv6 multicast traffic is duplicated only where the distribution tree branches, and this process
automatically repeats until the IPv6 multicast traffic reaches the receivers.
The working mechanism of IPv6 PIM-SM is summarized as follows:
• Neighbor discovery
• DR election
• RP discovery
• Embedded RP
• RPT building
• IPv6 multicast source registration










