R3102-R3103-HP 6600/HSR6600 Routers IP Multicast Configuration Guide
Table Of Contents
- Title Page
- Contents
- Multicast overview
- Configuring IGMP snooping
- Overview
- IGMP snooping configuration task list
- Configuring basic IGMP snooping functions
- Configuring IGMP snooping port functions
- Configuring IGMP snooping querier
- Configuring IGMP snooping proxying
- Configuring IGMP snooping policies
- Configuration prerequisites
- Configuring a multicast group filter
- Configuring multicast source port filtering
- Enabling dropping unknown multicast data
- Enabling IGMP report suppression
- Setting the maximum number of multicast groups that a port can join
- Enabling multicast group replacement
- Setting the 802.1p precedence for IGMP messages
- Enabling the IGMP snooping host tracking function
- Displaying and maintaining IGMP snooping
- IGMP snooping configuration examples
- Troubleshooting IGMP snooping
- Appendix
- Configuring multicast routing and forwarding
- Overview
- Configuration task list
- Enabling IP multicast routing
- Configuring multicast routing and forwarding
- Displaying and maintaining multicast routing and forwarding
- Configuration examples
- Troubleshooting multicast routing and forwarding
- Configuring IGMP
- Overview
- IGMP configuration task list
- Configuring basic IGMP functions
- Adjusting IGMP performance
- Configuring IGMP SSM mapping
- Configuring IGMP proxying
- Displaying and maintaining IGMP
- IGMP configuration examples
- Troubleshooting IGMP
- Configuring PIM
- Overview
- Configuring PIM-DM
- Configuring PIM-SM
- Configuring BIDIR-PIM
- Configuring PIM-SSM
- Configuring common PIM features
- Displaying and maintaining PIM
- PIM configuration examples
- Troubleshooting PIM
- Configuring MSDP
- Overview
- MSDP configuration task list
- Configuring basic MSDP functions
- Configuring an MSDP peer connection
- Configuring SA message related parameters
- Displaying and maintaining MSDP
- MSDP configuration examples
- Troubleshooting MSDP
- Configuring MBGP
- MBGP overview
- Protocols and standards
- MBGP configuration task list
- Configuring basic MBGP functions
- Controlling route advertisement and reception
- Configuration prerequisites
- Configuring MBGP route redistribution
- Configuring default route redistribution into MBGP
- Configuring MBGP route summarization
- Advertising a default route to an IPv4 MBGP peer or peer group
- Configuring outbound MBGP route filtering
- Configuring inbound MBGP route filtering
- Configuring MBGP route dampening
- Configuring MBGP route attributes
- Optimizing MBGP networks
- Configuring a large scale MBGP network
- Displaying and maintaining MBGP
- MBGP configuration example
- Configuring multicast VPN
- Overview
- How MD-VPN works
- Multicast VPN configuration task list
- Configuring MD-VPN
- Configuring BGP MDT
- Specifying the source IP address for multicast across VPNs
- Displaying and maintaining multicast VPN
- Multicast VPN configuration examples
- Troubleshooting MD-VPN
- Configuring IPv6 multicast routing and forwarding
- Overview
- Configuration task list
- Enabling IPv6 multicast routing
- Configuring IPv6 multicast routing and forwarding
- Displaying and maintaining IPv6 multicast routing and forwarding
- IPv6 multicast forwarding over GRE tunnel configuration example
- Troubleshooting abnormal termination of IPv6 multicast data
- Configuring MLD
- Overview
- MLD configuration task list
- Configuring basic MLD functions
- Adjusting MLD performance
- Configuring MLD SSM mapping
- Configuring MLD proxying
- Displaying and maintaining MLD
- MLD configuration examples
- Troubleshooting MLD
- Configuring IPv6 PIM
- Overview
- Configuring IPv6 PIM-DM
- Configuring IPv6 PIM-SM
- Configuring IPv6 BIDIR-PIM
- Configuring IPv6 PIM-SSM
- Configuring common IPv6 PIM features
- Displaying and maintaining IPv6 PIM
- IPv6 PIM configuration examples
- Troubleshooting IPv6 PIM
- Configuring IPv6 MBGP
- Overview
- IPv6 MBGP configuration task list
- Configuring basic IPv6 MBGP functions
- Controlling route distribution and reception
- Configuration prerequisites
- Injecting a local IPv6 MBGP route
- Configuring IPv6 MBGP route redistribution
- Configuring IPv6 MBGP route summarization
- Advertising a default route to a peer or peer group
- Configuring outbound IPv6 MBGP route filtering
- Configuring inbound IPv6 MBGP route filtering
- Configuring IPv6 MBGP route dampening
- Configuring IPv6 MBGP route attributes
- Optimizing IPv6 MBGP networks
- Configuring a large scale IPv6 MBGP network
- Displaying and maintaining IPv6 MBGP
- IPv6 MBGP configuration example
- Configuring PIM snooping
- Configuring multicast VLANs
- Support and other resources
- Index
170
The working process of Anycast RP is as follows:
4. The multicast source registers with the nearest RP. In this example, Source registers with RP 1, with
its multicast data encapsulated in the register message. When the register message arrives at RP
1, RP 1 de-encapsulates the message.
5. Receivers send join messages to the nearest RP to join in the RPT rooted as this RP. In this example,
Receiver joins the RPT rooted at RP 2.
6. RPs share the registered multicast information by means of SA messages. In this example, RP 1
creates an SA message and sends it to RP 2, with the multicast data from Source encapsulated in
the SA message. When the SA message reaches RP 2, RP 2 de-encapsulates the message.
7. Receivers receive the multicast data along the RPT and directly join the SPT rooted at the multicast
source. In this example, RP 2 forwards the multicast data down the RPT. When Receiver receives
the multicast data from Source, it directly joins the SPT rooted at Source.
The significance of Anycast RP is as follows:
• Optimal RP path—A multicast source registers with the nearest RP so that an SPT with the optimal
path is built. A receiver joins the nearest RP so that an RPT with the optimal path is built.
• Load balancing between RPs—Each RP maintains part of the source/group information within the
PIM-SM domain and forward part of the multicast data, achieving load balancing between
different RPs.
• Redundancy backup between RPs—When an RP fails, the multicast source that previously
registered with the RP or the receivers that previously joined the RP will register with or join another
nearest RP, achieving redundancy backup between RPs.
Be sure to configure a 32-bit subnet mask (255.255.255.255) for the Anycast RP address. Namely, be
sure to configure the Anycast RP address into a host address.
MSDP support for VPNs
The interfaces on the multicast routers in a VPN can set up MSDP peering relationships between each
other. By exchanging SA messages between MSDP peers, multicast transmission in a VPN between
different PIM-SM domains can be implemented.
To support MSDP for VPNs, a multicast router that runs MSDP maintains an independent set of MSDP
mechanism for each VPN that it supports, including:
• SA cache
• Peering connection
• Timers
• Sending cache
• Cache for exchanging PIM messages
One VPN is isolated from another, and MSDP and PIM-SM messages can be exchanged only within the
same VPN.
Protocols and standards
• RFC 3618, Multicast Source Discovery Protocol (MSDP)
• RFC 3446, Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM)
and Multicast Source Discovery Protocol (MSDP)










