NonStop NS-Series Operations Guide (H06.03+)
Table Of Contents
- What’s New in This Manual
- About This Guide
- 1 Introduction to Integrity NonStop NSSeries Operations
- When to Use This Section
- Understanding the Operational Environment
- What Are the Operator Tasks?
- Monitoring the System and Performing Recovery Operations
- Preparing for and Recovering from Power Failures
- Stopping and Powering Off theSystem
- Powering On and Starting the System
- Creating Startup and Shutdown Files
- Performing Preventive Maintenance
- Operating Disk Drives and Tape Drives
- Responding to Spooler Problems
- Updating Firmware
- Determining the Cause of a Problem: A Systematic Approach
- Logging On to an Integrity NonStop Server
- Service Procedures
- 2 Determining Your System Configuration
- 3 Overview of Monitoring and Recovery
- 4 Monitoring EMS Event Messages
- 5 Processes: Monitoring and Recovery
- 6 Communications Subsystems: Monitoring and Recovery
- 7 ServerNet Resources: Monitoring and Recovery
- 8 I/O Adapters and Modules: Monitoring and Recovery
- 9 Processors and Components: Monitoring and Recovery
- When to Use This Section
- Overview of the NonStop Blade Complex
- Monitoring and Maintaining Processors
- Identifying Processor Problems
- Recovery Operations for Processors
- Recovery Operations for a Processor Halt
- Halting One or More Processors
- Reloading a Single Processor on a Running Server
- Recovery Operations for a System Hang
- Enabling/Disabling Processor and System Freeze
- Freezing the System and Freeze-Enabled Processors
- Dumping a Processor to Disk
- Backing Up a Processor Dump to Tape
- Replacing Processor Memory
- Replacing the Processor Board and Processor Entity
- Submitting Information to Your Service Provider
- Related Reading
- 10 Disk Drives: Monitoring and Recovery
- 11 Tape Drives: Monitoring and Recovery
- 12 Printers and Terminals: Monitoring and Recovery
- 13 Applications: Monitoring and Recovery
- 14 Power Failures: Preparation and Recovery
- 15 Starting and Stopping the System
- When to Use This Section
- Powering On a System
- Starting a System
- Minimizing the Frequency of Planned Outages
- Stopping Application, Devices, and Processes
- Stopping the System
- Powering Off a System
- Troubleshooting and Recovery Operations
- Fans Are Not Turning
- System Does Not Appear to Be Powered On
- Green LED Is Not Lit After POSTs Finish
- Amber LED on a Component Remains Lit After the POST Finishes
- Components Fail When Testing the Power
- Recovering From a System Load Failure
- Getting a Corrupt System Configuration File Analyzed
- Recovering From a Reload Failure
- Exiting the OSM Low-Level Link
- Opening Startup Event Stream and Startup TACL Windows
- Related Reading
- 16 Creating Startup and Shutdown Files
- Automating System Startup and Shutdown
- Processes That Represent the System Console
- Example Command Files
- CIIN File
- Writing Efficient Startup and Shutdown Command Files
- How Process Persistence Affects Configuration and Startup
- Tips for Startup Files
- Startup File Examples
- Tips for Shutdown Files
- Shutdown File Examples
- 17 Preventive Maintenance
- A Operational Differences Between Systems Running GSeries and HSeries RVUs
- B Tools and Utilities for Operations
- When to Use This Appendix
- BACKCOPY
- BACKUP
- Disk Compression Program (DCOM)
- Disk Space Analysis Program (DSAP)
- EMSDIST
- Event Management Service Analyzer (EMSA)
- File Utility Program (FUP)
- Measure
- MEDIACOM
- NonStop NET/MASTER
- NSKCOM and the Kernel-Managed Swap Facility (KMSF)
- OSM Package
- PATHCOM
- PEEK
- RESTORE
- SPOOLCOM
- Subsystem Control Facility (SCF)
- HP Tandem Advanced Command Language (TACL)
- TMFCOM
- Web ViewPoint
- ViewPoint
- ViewSys
- C Related Reading
- D Converting Numbers
- Safety and Compliance
- Index

Processors and Components: Monitoring and
Recovery
HP Integrity NonStop NS-Series Operations Guide—529869-001
9-2
When to Use This Section
When to Use This Section
Use this section to monitor processors and to perform recovery operations such as
processor dumps.
Overview of the NonStop Blade Complex
The basic building block of the modular NonStop advanced architecture (NSAA)
compute engine is the NonStop Blade Complex, which consists of two or three
processor modules called NonStop Blade Elements. Each Blade Element houses two
or four microprocessors called processor elements (PEs). A logical processor consists
of one processor element from each Blade Element. Although a logical processor
physically consists of multiple processor elements, it is convenient to think of a logical
processor as a single entity within the system. Each logical processor has its own
memory, its own copy of the operating system, and processes a single instruction
stream. NSAA logical processors are usually referred to simply as “processors.”
All input and output to and from each NonStop Blade Element goes through a logical
synchronization unit (LSU). The LSU interfaces with the ServerNet fabrics and contains
logic that compares all output operations of a logical processor, ensuring that all
NonStop Blade Elements agree on the result before the data is passed to the
ServerNet fabrics.
A processor with two NonStop Blade Elements comprise the dual modular redundant
(DMR) NonStop Blade Complex, which is also referred to as a duplex system. This
duplex system provides data integrity and system availability that is comparable to
NonStop S-series systems, but at considerably faster processing speeds.
Three NonStop Blade Elements plus their associated LSUs make up the triple modular
redundant (TMR) NonStop Blade Complex, which is referred to as a triplex system.
The triplex system provides the same processing speeds as the duplex system while
also enabling hardware fault recovery that is transparent to all but the lowest level of
the NonStop operating system (OS).
In the event of a processor fault in either a duplex or triplex system, the failed
component within a NonStop Blade Element (processor element, power supply, and so
forth) can be replaced while the system continues to run. A single Integrity NonStop
system can have up to four NonStop Blade Complexes for a total of 16 processors.
Processors communicate with each other and with the system I/O over dual ServerNet
fabrics.
A ServerNet fabric is a complex web of links that provide a large number of possible
paths from one point to another. Two communications fabrics, the X and Y ServerNet
fabrics, provide redundant, fault-tolerant communications pathways. If a hardware fault
occurs on one of the ServerNet fabrics, communications continues on the other with
hardware fault recovery transparent to all but the lowest level of the OS.
Figure 9-1 is an overview of the modular NSAA and shows one NonStop Blade
Complex with four processors, the I/O hardware and the ServerNet fabrics.










