NonStop NS-Series Operations Guide (H06.03+)
Table Of Contents
- What’s New in This Manual
- About This Guide
- 1 Introduction to Integrity NonStop NSSeries Operations
- When to Use This Section
- Understanding the Operational Environment
- What Are the Operator Tasks?
- Monitoring the System and Performing Recovery Operations
- Preparing for and Recovering from Power Failures
- Stopping and Powering Off theSystem
- Powering On and Starting the System
- Creating Startup and Shutdown Files
- Performing Preventive Maintenance
- Operating Disk Drives and Tape Drives
- Responding to Spooler Problems
- Updating Firmware
- Determining the Cause of a Problem: A Systematic Approach
- Logging On to an Integrity NonStop Server
- Service Procedures
- 2 Determining Your System Configuration
- 3 Overview of Monitoring and Recovery
- 4 Monitoring EMS Event Messages
- 5 Processes: Monitoring and Recovery
- 6 Communications Subsystems: Monitoring and Recovery
- 7 ServerNet Resources: Monitoring and Recovery
- 8 I/O Adapters and Modules: Monitoring and Recovery
- 9 Processors and Components: Monitoring and Recovery
- When to Use This Section
- Overview of the NonStop Blade Complex
- Monitoring and Maintaining Processors
- Identifying Processor Problems
- Recovery Operations for Processors
- Recovery Operations for a Processor Halt
- Halting One or More Processors
- Reloading a Single Processor on a Running Server
- Recovery Operations for a System Hang
- Enabling/Disabling Processor and System Freeze
- Freezing the System and Freeze-Enabled Processors
- Dumping a Processor to Disk
- Backing Up a Processor Dump to Tape
- Replacing Processor Memory
- Replacing the Processor Board and Processor Entity
- Submitting Information to Your Service Provider
- Related Reading
- 10 Disk Drives: Monitoring and Recovery
- 11 Tape Drives: Monitoring and Recovery
- 12 Printers and Terminals: Monitoring and Recovery
- 13 Applications: Monitoring and Recovery
- 14 Power Failures: Preparation and Recovery
- 15 Starting and Stopping the System
- When to Use This Section
- Powering On a System
- Starting a System
- Minimizing the Frequency of Planned Outages
- Stopping Application, Devices, and Processes
- Stopping the System
- Powering Off a System
- Troubleshooting and Recovery Operations
- Fans Are Not Turning
- System Does Not Appear to Be Powered On
- Green LED Is Not Lit After POSTs Finish
- Amber LED on a Component Remains Lit After the POST Finishes
- Components Fail When Testing the Power
- Recovering From a System Load Failure
- Getting a Corrupt System Configuration File Analyzed
- Recovering From a Reload Failure
- Exiting the OSM Low-Level Link
- Opening Startup Event Stream and Startup TACL Windows
- Related Reading
- 16 Creating Startup and Shutdown Files
- Automating System Startup and Shutdown
- Processes That Represent the System Console
- Example Command Files
- CIIN File
- Writing Efficient Startup and Shutdown Command Files
- How Process Persistence Affects Configuration and Startup
- Tips for Startup Files
- Startup File Examples
- Tips for Shutdown Files
- Shutdown File Examples
- 17 Preventive Maintenance
- A Operational Differences Between Systems Running GSeries and HSeries RVUs
- B Tools and Utilities for Operations
- When to Use This Appendix
- BACKCOPY
- BACKUP
- Disk Compression Program (DCOM)
- Disk Space Analysis Program (DSAP)
- EMSDIST
- Event Management Service Analyzer (EMSA)
- File Utility Program (FUP)
- Measure
- MEDIACOM
- NonStop NET/MASTER
- NSKCOM and the Kernel-Managed Swap Facility (KMSF)
- OSM Package
- PATHCOM
- PEEK
- RESTORE
- SPOOLCOM
- Subsystem Control Facility (SCF)
- HP Tandem Advanced Command Language (TACL)
- TMFCOM
- Web ViewPoint
- ViewPoint
- ViewSys
- C Related Reading
- D Converting Numbers
- Safety and Compliance
- Index
Creating Startup and Shutdown Files
HP Integrity NonStop NS-Series Operations Guide—529869-001
16-11
Avoid Manual Intervention
Avoid Manual Intervention
Write startup and shutdown files so that they execute correctly without requiring
manual intervention. Any time an operator must intervene, startup and shutdown time
increase and the possibility of human error increases.
Use Parallel Processing
Parallel processing decreases the time required to start up or shut down your system
or application because startup and shutdown processes are distributed throughout the
processors in your system. For example, this SCF command file uses parallel
processing in four processors to start several communications lines. The files START0,
START1, START2, and START3 contain the actual commands that start the
communications lines.
This command file uses a special technique intended to ensure that each process gets
started even if a given processor is out of service. The technique is to start each
process in two processors. If the first processor is down, the command file continues to
the next processor. If the first processor is up, and the process is started, the
command file still continues to the next processor but fails because the process name
($Sn) is in use by the process that was successfully started. As a result, a specified
process is started in whichever processor is running. Of course, if neither processor is
up, the attempt to start the process fails.
SCF /IN START0, NOWAIT, CPU 0, NAME $S0/
SCF /IN START0, NOWAIT, CPU 2, NAME $S0/
SCF /IN START1, NOWAIT, CPU 1, NAME $S1/
SCF /IN START1, NOWAIT, CPU 3, NAME $S1/
SCF /IN START2, NOWAIT, CPU 2, NAME $S2/
SCF /IN START2, NOWAIT, CPU 0, NAME $S2/
SCF /IN START3, NOWAIT, CPU 3, NAME $S3/
SCF /IN START3, NOWAIT, CPU 1, NAME $S3/
When using the technique shown in this command file, make sure to spread the
process workload across all available processors. If there are too many processes to
start in processors 0 and 1, queuing and memory-contention problems can result.










