C/C++ Programmer's Guide (G06.27+, H06.03+)
Table Of Contents
- What’s New in This Manual
- About This Guide
- 1 Introduction to HP C and C++ for NonStop Systems
- TNS C Language System
- TNS C++ Language System
- TNS/R Native C and C++ Language System
- TNS/R Native C Compiler
- TNS/R Native C++ Compiler
- TNS/R Native C Run-Time Library
- C++ Run-Time Library and Standard C++ Library
- TNS/R Native Linkers (nld and ld Utilities)
- Inspect Symbolic Debugger
- Visual Inspect Symbolic Debugger
- TNS/R Native Object File Tool (noft Utility)
- NonStop SQL/MP Compiler and NonStop SQL/MX Compiler
- TNS/R Native C and C++ Migration Tool
- Features of TNS/R Native C and C++
- TNS/E Native C and C++ Language System
- TNS/E Native C Compiler
- TNS/E Native C++ Compiler
- TNS/E Native C Run-Time Library
- C++ Run-Time Library and Standard C++ Library
- TNS/E Native Linker (eld Utility)
- Native Inspect Symbolic Debugger
- Visual Inspect Symbolic Debugger
- TNS/E Native Object File Tool (enoft Utility)
- NonStop SQL/MP Compiler and NonStop SQL/MX Compiler
- TNS/E Native C and C++ Migration Tool
- Features of TNS/E Native C and C++
- Writing Portable Programs
- Porting Programs to HP C and C++ for NonStop Systems
- Porting Without Data Alignment Problems
- Guardian and OSS Environment Interoperability
- 2 C and C++ Extensions
- 3 Interfacing to Guardian Procedures and OSS Functions
- 4 Using the C Run-Time Library
- 5 Using the Standard C++ Library
- 6 Accessing Middleware Using HP C and C++ for NonStop Systems
- 7 Mixed-Language Programming for TNS Programs
- 8 Mixed-Language Programming for TNS/R and TNS/E Native Programs
- 9 System-Level Programming
- 10 Converting C-Series TNS Programs to Use the Current TNS Compiler
- 11 Migrating Programs to TNS/R or TNS/E Native Mode
- 12 Preprocessor Directives and Macros
- 13 Compiler Pragmas
- ALLOW_CPLUSPLUS_COMMENTS
- ALLOW_EXTERN_EXPLICIT_INSTANTIATION
- ANSICOMPLY
- ANSISTREAMS
- BUILD_NEUTRAL_LIBRARY
- CALL_SHARED
- CHECK
- COLUMNS
- CPATHEQ
- CPPONLY
- CSADDR
- ELD(arg)
- ENV
- ERRORFILE
- ERRORS
- EXTENSIONS
- EXTERN_DATA
- FIELDALIGN
- FORCE_VTBL
- FORCE_STATIC_TYPEINFO
- FORCE_STATIC_VTBL
- FUNCTION
- HEADERS
- HEAP
- HIGHPIN
- HIGHREQUESTERS
- ICODE
- IEEE_FLOAT
- INLINE
- INLINE_COMPILER_GENERATED_FUNCTIONS
- INLINE_LIMIT
- INLINE_STRING_LITERALS
- INNERLIST
- INSPECT
- KR
- LARGESYM
- LD(arg)
- LINES
- LINKFILE
- LIST
- LMAP
- MAP
- MAPINCLUDE
- MAXALIGN
- MIGRATION_CHECK
- NEST
- NEUTRAL
- NLD(arg)
- NOEXCEPTIONS
- NON_SHARED
- OLDCALLS
- OLIMIT
- ONCE
- OPTFILE
- OPTIMIZE
- OVERFLOW_TRAPS
- PAGE
- POOL_STRING_LITERALS
- POP
- PUSH
- REFALIGNED
- REMARKS
- RUNNABLE
- RUNNAMED
- RVU
- SAVEABEND
- SEARCH
- SECTION
- SHARED
- SQL
- SQLMEM
- SRL
- SRLExportClassMembers
- SRLExports
- SRLName
- SSV
- STDFILES
- STRICT
- SUPPRESS
- SUPPRESS_VTBL
- SYMBOLS
- SYNTAX
- SYSTYPE
- TANDEM_FLOAT
- TRIGRAPH
- VERSION1
- VERSION2
- VERSION3
- WARN
- WIDE
- XMEM
- XVAR
- 14 Compiling, Binding, and Accelerating TNS C Programs
- 15 Compiling, Binding, and Accelerating TNS C++ Programs
- 16 Compiling and Linking TNS/R Native C and C++ Programs
- 17 Compiling and Linking TNS/E Native C and C++ Programs
- 18 Using ETK and Native C/C++ Cross Compiler on the PC
- 19 Running and Debugging C and C++ Programs
- 20 TNS C Compiler Messages
- 21 Native C and C++ Compiler Messages
- 22 Run-Time Messages
- 23 Handling TNS Data Alignment
- A HP C Implementation-Defined Behavior
- Implementation-Defined Behavior of Native C
- G.3.1 Translation
- G.3.2 Environment
- G.3.3 Identifiers
- G.3.4 Characters
- G.3.5 Integers
- G.3.6 Floating Point
- G.3.7 Arrays and Pointers
- G.3.8 Registers
- G.3.9 Structures, Unions, Enumerations, and Bit Fields
- G.3.10 Qualifiers
- G.3.11 Declarators
- G.3.12 Statements
- G.3.13 Preprocessing Directives
- G.3.14 Library Functions
- G.4 Locale Behavior
- G.5 Common Extensions
- Translation Limits for Native C Compilers
- Implementation-Defined Behavior of TNS C
- G.3.1 Translation
- G.3.2 Environment
- G.3.3 Identifiers
- G.3.4 Characters
- G.3.5 Integers
- G.3.6 Floating Point
- G.3.7 Arrays and Pointers
- G.3.8 Registers
- G.3.9 Structures, Unions, Enumerations and Bit Fields
- G.3.10 Qualifiers
- G.3.11 Declarators
- G.3.12 Statements
- G.3.13 Preprocessing Directives
- G.3.14 Library Functions
- G.4 Locale Behavior
- G.5 Common Extensions
- Implementation-Defined Behavior of Native C
- B TNS C++ ImplementationDefined Behavior
- C ASCII Character Set
- D Data Type Correspondence
- E Features and Keywords of Version2NativeC++
- F MIGRATION_CHECK Messages
- Glossary
- Index
Running and Debugging C and C++ Programs
HP C/C++ Programmer’s Guide for NonStop Systems—429301-010
19-2
Running Programs in the OSS Environment
IN file-name
specifies the standard input file (stdin) for the new process. If you do not
include the IN option, the new process uses the command interpreter's default
input file, which is usually your home terminal.
OUT file-name
specifies the standard output file (stdout) for the new process. If you do not
include the OUT option, the new process uses the command interpreter’s
default output file, which is usually your home terminal.
args-list
is a space-separated list of additional arguments to the C or C++ program you are
running. Note that you separate these arguments with spaces, not commas.
Usage Guidelines
•
To run in the Guardian environment a native object file that was compiled in the
OSS environment, you must set the file code to 700 for a TNS/R object file or 800
for a TNS/E object file after copying the file to the Guardian file system.
For example, to set the file code of an object file to 700, enter this at a TACL
prompt:
> FUP ALTER filename, CODE 700
To determine the file code of an object file, enter:
> FUP INFO filename
•
You can group several words into a single args-list argument by enclosing
them in quotation marks; for example:
5> RUN invite /OUT $s.#hold/ "Bruce and Rob"
•
To include a quotation mark as part of a quoted argument, use two quotation
marks; for example:
6> RUN findstr /IN myfile/ "Refer to ""Running a *"""
Running Programs in the OSS Environment
To run a C or C++ program from the OSS environment, enter the program file name at
the OSS shell prompt. You can also use the run command to run a process with HP
specific attributes. For more details, see the run(1) reference page, available either
online or in the Open System Services Shell and Utilities Reference Manual.