C/C++ Programmer's Guide (G06.27+, H06.03+)
Table Of Contents
- What’s New in This Manual
- About This Guide
- 1 Introduction to HP C and C++ for NonStop Systems
- TNS C Language System
- TNS C++ Language System
- TNS/R Native C and C++ Language System
- TNS/R Native C Compiler
- TNS/R Native C++ Compiler
- TNS/R Native C Run-Time Library
- C++ Run-Time Library and Standard C++ Library
- TNS/R Native Linkers (nld and ld Utilities)
- Inspect Symbolic Debugger
- Visual Inspect Symbolic Debugger
- TNS/R Native Object File Tool (noft Utility)
- NonStop SQL/MP Compiler and NonStop SQL/MX Compiler
- TNS/R Native C and C++ Migration Tool
- Features of TNS/R Native C and C++
- TNS/E Native C and C++ Language System
- TNS/E Native C Compiler
- TNS/E Native C++ Compiler
- TNS/E Native C Run-Time Library
- C++ Run-Time Library and Standard C++ Library
- TNS/E Native Linker (eld Utility)
- Native Inspect Symbolic Debugger
- Visual Inspect Symbolic Debugger
- TNS/E Native Object File Tool (enoft Utility)
- NonStop SQL/MP Compiler and NonStop SQL/MX Compiler
- TNS/E Native C and C++ Migration Tool
- Features of TNS/E Native C and C++
- Writing Portable Programs
- Porting Programs to HP C and C++ for NonStop Systems
- Porting Without Data Alignment Problems
- Guardian and OSS Environment Interoperability
- 2 C and C++ Extensions
- 3 Interfacing to Guardian Procedures and OSS Functions
- 4 Using the C Run-Time Library
- 5 Using the Standard C++ Library
- 6 Accessing Middleware Using HP C and C++ for NonStop Systems
- 7 Mixed-Language Programming for TNS Programs
- 8 Mixed-Language Programming for TNS/R and TNS/E Native Programs
- 9 System-Level Programming
- 10 Converting C-Series TNS Programs to Use the Current TNS Compiler
- 11 Migrating Programs to TNS/R or TNS/E Native Mode
- 12 Preprocessor Directives and Macros
- 13 Compiler Pragmas
- ALLOW_CPLUSPLUS_COMMENTS
- ALLOW_EXTERN_EXPLICIT_INSTANTIATION
- ANSICOMPLY
- ANSISTREAMS
- BUILD_NEUTRAL_LIBRARY
- CALL_SHARED
- CHECK
- COLUMNS
- CPATHEQ
- CPPONLY
- CSADDR
- ELD(arg)
- ENV
- ERRORFILE
- ERRORS
- EXTENSIONS
- EXTERN_DATA
- FIELDALIGN
- FORCE_VTBL
- FORCE_STATIC_TYPEINFO
- FORCE_STATIC_VTBL
- FUNCTION
- HEADERS
- HEAP
- HIGHPIN
- HIGHREQUESTERS
- ICODE
- IEEE_FLOAT
- INLINE
- INLINE_COMPILER_GENERATED_FUNCTIONS
- INLINE_LIMIT
- INLINE_STRING_LITERALS
- INNERLIST
- INSPECT
- KR
- LARGESYM
- LD(arg)
- LINES
- LINKFILE
- LIST
- LMAP
- MAP
- MAPINCLUDE
- MAXALIGN
- MIGRATION_CHECK
- NEST
- NEUTRAL
- NLD(arg)
- NOEXCEPTIONS
- NON_SHARED
- OLDCALLS
- OLIMIT
- ONCE
- OPTFILE
- OPTIMIZE
- OVERFLOW_TRAPS
- PAGE
- POOL_STRING_LITERALS
- POP
- PUSH
- REFALIGNED
- REMARKS
- RUNNABLE
- RUNNAMED
- RVU
- SAVEABEND
- SEARCH
- SECTION
- SHARED
- SQL
- SQLMEM
- SRL
- SRLExportClassMembers
- SRLExports
- SRLName
- SSV
- STDFILES
- STRICT
- SUPPRESS
- SUPPRESS_VTBL
- SYMBOLS
- SYNTAX
- SYSTYPE
- TANDEM_FLOAT
- TRIGRAPH
- VERSION1
- VERSION2
- VERSION3
- WARN
- WIDE
- XMEM
- XVAR
- 14 Compiling, Binding, and Accelerating TNS C Programs
- 15 Compiling, Binding, and Accelerating TNS C++ Programs
- 16 Compiling and Linking TNS/R Native C and C++ Programs
- 17 Compiling and Linking TNS/E Native C and C++ Programs
- 18 Using ETK and Native C/C++ Cross Compiler on the PC
- 19 Running and Debugging C and C++ Programs
- 20 TNS C Compiler Messages
- 21 Native C and C++ Compiler Messages
- 22 Run-Time Messages
- 23 Handling TNS Data Alignment
- A HP C Implementation-Defined Behavior
- Implementation-Defined Behavior of Native C
- G.3.1 Translation
- G.3.2 Environment
- G.3.3 Identifiers
- G.3.4 Characters
- G.3.5 Integers
- G.3.6 Floating Point
- G.3.7 Arrays and Pointers
- G.3.8 Registers
- G.3.9 Structures, Unions, Enumerations, and Bit Fields
- G.3.10 Qualifiers
- G.3.11 Declarators
- G.3.12 Statements
- G.3.13 Preprocessing Directives
- G.3.14 Library Functions
- G.4 Locale Behavior
- G.5 Common Extensions
- Translation Limits for Native C Compilers
- Implementation-Defined Behavior of TNS C
- G.3.1 Translation
- G.3.2 Environment
- G.3.3 Identifiers
- G.3.4 Characters
- G.3.5 Integers
- G.3.6 Floating Point
- G.3.7 Arrays and Pointers
- G.3.8 Registers
- G.3.9 Structures, Unions, Enumerations and Bit Fields
- G.3.10 Qualifiers
- G.3.11 Declarators
- G.3.12 Statements
- G.3.13 Preprocessing Directives
- G.3.14 Library Functions
- G.4 Locale Behavior
- G.5 Common Extensions
- Implementation-Defined Behavior of Native C
- B TNS C++ ImplementationDefined Behavior
- C ASCII Character Set
- D Data Type Correspondence
- E Features and Keywords of Version2NativeC++
- F MIGRATION_CHECK Messages
- Glossary
- Index

Running and Debugging C and C++ Programs
HP C/C++ Programmer’s Guide for NonStop Systems—429301-010
19-7
Two Memory Models: Large and Small
Two Memory Models: Large and Small
HP TNS C has two memory models: the large-memory model and the small-memory
model. HP TNS C++, native C, and native C++ has only the large-memory model.
Both models support large amounts of code, but the large-memory model also
supports large amounts of data. You cannot mix modules compiled with different
memory models; all modules in a program must be compiled for either the small-
memory model or the large-memory model. Table 19-2 summarizes the characteristics
of each memory model. Figure 19-1 on page 19-8 illustrates the memory models.
HP strongly recommends that your TNS C programs use the large-memory model.
Small-Memory Model
The small-memory model uses 16-bit addressing and stores all data in the user data
space, which can contain up to 64 KB.
The primary global area contains global scalar variables, scalar variables that are local
to a function but are declared as having storage class static, and pointers to global
aggregates that reside in the secondary global area. (A scalar type is a character, an
integer, an enumeration, or a floating point type. An aggregate type is an array or
struct.)
The heap area is reserved for dynamic memory. The heap is managed by the
calloc(), free(), malloc(), and realloc() library functions.
The stack area is reserved for the run-time stack. The stack area stores local variables.
Its size is 64 KB minus the size of the heap and the global area.
Large-Memory Model
The large-memory model uses 32-bit addressing. It stores the heap and the global and
static aggregates in a single extended memory segment. Here, static aggregate refers
to an aggregate that is declared with the static storage class specifier. Both global
and static aggregates have storage class static, which means that they retain their
values throughout the execution of the entire program.
Table 19-2. Memory Models
Memory
Model
Size of
Code Space
Size of
Data Space
Size of
Pointer Available in
Small 4 MB 64 KB 16-bit Guardian environment for TNS C
programs only
Large 4 MB 127.5 MB 32-bit Guardian and OSS environments
for all C and C++ programs