Guardian Programmer's Guide
Table Of Contents
- Guardian Programmer’s Guide
- Contents
- What’s New in This Manual
- About This Manual
- Legal Notices
- 1 Introduction to Guardian Programming
- 2 Using the File System
- 3 Coordinating Concurrent File Access
- 4 Using Nowait Input/Output
- 5 Communicating With Disk Files- Types of Disk Files
- Using Unstructured Files- Creating Unstructured Files
- Opening Unstructured Files
- Positioning, Reading, and Writing With Unstructured Files
- Locking With Unstructured Files
- Renaming Unstructured Files
- Avoiding Unnecessary Cache Flushes to Unstructured Files
- Closing Unstructured Files
- Purging Unstructured Files
- Altering Unstructured-File Attributes
 
- Using Relative Files
- Using Entry-Sequenced Files
- Using Key-Sequenced Files- Creating Key-Sequenced Files
- Opening Key-Sequenced Files
- Positioning, Reading, and Writing With Key-Sequenced Files
- Locking, Renaming, Caching, Closing, Purging, and Altering Key-Sequenced Files
- Key-Sequenced File Programming Example
- Using Alternate Keys With an Entry-Sequenced File
- Using Alternate Keys With a Key-Sequenced File
 
- Using Partitioned Files
- Using Alternate Keys
 
- 6 Communicating With Processes- Sending and Receiving Messages: An Introduction
- Sending Messages to Other Processes
- Queuing Messages on $RECEIVE
- Receiving and Replying to Messages From Other Processes
- Receiving Messages From Other Processes: One-Way Communication
- Handling Multiple Messages Concurrently
- Checking for Canceled Messages
- Receiving and Processing System Messages
- Handling Errors
- Communicating With Processes: Sample Programs
 
- 7 Using DEFINEs
- 8 Communicating With a TACL Process
- 9 Communicating With Devices
- 10 Communicating With Terminals
- 11 Communicating With Printers
- 12 Communicating With Magnetic Tape- Accessing Magnetic Tape: An Introduction
- Positioning the Tape
- Reading and Writing Tape Records
- Blocking Tape Records
- Working in Buffered Mode
- Working With Standard Labeled Tapes- Enabling Labeled Tape Processing
- Creating Labeled Tapes
- Checking for Labeled Tape Support
- Accessing Labeled Tapes
- Writing to the Only File on a Labeled Tape Volume
- Writing to a File on a Multiple-File Labeled Tape Volume
- Writing to a File on Multiple Labeled Tape Volumes
- Reading From the Only File on a Labeled Tape Volume
- Reading From a File on a Multiple-File Labeled Tape Volume
- Reading From a File on Multiple Labeled Tape Volumes
 
- Accessing a Labeled Tape File: An Example
- Working With Unlabeled Tapes
- Terminating Tape Access
- Recovering From Errors
- Accessing an Unlabeled Tape File: An Example
 
- 13 Manipulating File Names
- 14 Using the IOEdit Procedures
- 15 Using the Sequential Input/Output Procedures- An Introduction to the SIO Procedures
- Initializing SIO Files Using TAL or pTAL DEFINEs
- Opening and Creating SIO Files
- Getting Information About SIO Files
- Reading and Writing SIO Files
- Accessing EDIT Files
- Handling Nowait I/O
- Handling Interprocess Messages
- Handling System Messages
- Handling BREAK Ownership
- Handling SIO Errors
- Closing SIO Files
- Initializing SIO Files Without TAL or pTAL DEFINEs
- Using the SIO Procedures: An Example
 
- 16 Creating and Managing Processes
- 17 Managing Memory- An Introduction to Memory-Management Procedures
- Managing the User Data Areas
- Using (Extended) Data Segments- Overview of Selectable Segments
- Overview of Flat Segments
- Which Type of Segment Should You Use?
- Using Selectable Segments in TNS Processes
- Accessing Data in Extended Data Segments
- Attributes of Extended Data Segments
- Allocating Extended Data Segments
- Checking Whether an Extended Data Segment Is Selectable or Flat
- Making a Selectable Segment Current
- Referencing Data in an Extended Data Segment
- Checking the Size of an Extended Data Segment
- Changing the Size of an Extended Data Segment
- Transferring Data Between an Extended Data Segment and a File
- Moving Data Between Extended Data Segments
- Checking Address Limits of an Extended Data Segment
- Sharing an Extended Data Segment
- Determining the Starting Address of a Flat Segment
- Deallocating an Extended Data Segment
 
- Using Memory Pools
 
- 18 Managing Time
- 19 Formatting and Manipulating Character Data- Using the Formatter
- Manipulating Character Strings
- Programming With Multibyte Character Sets- Checking for Multibyte Character-Set Support
- Determining the Default Character Set
- Analyzing a Multibyte Character String
- Dealing With Fragments of Multibyte Characters
- Handling Multibyte Blank Characters
- Determining the Character Size of a Multibyte Character Set
- Case Shifting With Multibyte Characters
- Testing for Special Symbols
- Sample Program
 
 
- 20 Interfacing With the ERROR Program
- 21 Writing a Requester Program
- 22 Writing a Server Program
- 23 Writing a Command-Interpreter Monitor ($CMON)- Communicating With TACL Processes
- Controlling the Configuration of a TACL Process
- Controlling Logon and Logoff
- Controlling Passwords
- Controlling Process Creation
- Controlling Change of Process Priority
- Controlling Adding and Deleting Users
- Controlling $CMON While the System Is Running
- Writing a $CMON Program: An Example
- Debugging a TACL Monitor ($CMON)
 
- 24 Writing a Terminal Simulator
- 25 Debugging, Trap Handling, and Signal Handling
- 26 Synchronizing Processes
- 27 Fault-Tolerant Programming in C- Overview of Active Backup Programming
- Summary of Active Backup Processing
- What the Programmer Must Do
- C Extensions That Support Active Backup Programming- Starting the Backup Process
- Opening a File With a Specified Sync Depth
- Retrieving File Open State Information in the Primary Process
- Opening Files in the Backup Process
- Retrieving File State Information in the Primary Process
- Updating File State Information in the Backup Process
- Terminating the Primary and Backup Processes
 
- Organizing an Active Backup Program
- Updating State Information
- Providing Communication Between the Primary and Backup Processes
- Programming Considerations
- Comparison of Active Backup and Passive Backup
- Active Backup Example 1
- Active Backup Example 2
 
- 28 Using Floating-Point Formats- Differences Between Tandem and IEEE Floating-Point Formats
- Building and Running IEEE Floating-Point Programs
- Compiling and Linking Floating-Point Programs
- Link-Time Consistency Checking
- Run-Time Consistency Checking
- Run-Time Support
- Debugging Options
- Conversion Routines
- Floating-Point Operating Mode Routines
 
- A Mixed Data Model Programming
- Glossary
- Index
Using Nowait Input/Output
Guardian Programmer’s Guide — 421922-014
4 - 11
Applying Nowait Operations to Multiple Files
parameter of the AWAITIO[X] procedure to -1. When AWAITIO[X] returns, it sets the 
file-number parameter to the number of the file whose I/O operation finished.
If you issue just one I/O operation at a time to each file, then the file number returned 
by the AWAITIO[X] procedure is enough to identify the completed operation.  However, 
it is often easier to use tags as described in the previous subsection.
A typical use for executing concurrent I/O operations against more than one file might 
be when a process communicates with more than one terminal. The problem with 
using waited I/O is that your program might, for example, issue a WRITEREADX call to 
the terminal of a user who has left the office. The user of the other terminal is locked 
out by this action, because the program waits indefinitely on the WRITEREADX call. 
Using nowait I/O, the WRITEREADX call can be issued to both terminals; the process 
responds to the terminal that replies:
NOWAIT^DEPTH := 1; 
ERROR := FILE_OPEN_(TERM1:LENGTH, 
 TERM^NUM1, 
 !access!, 
 !exclusion!, 
 NOWAIT^DEPTH); 
IF ERROR <> 0 THEN ...
ERROR := FILE_OPEN_(TERM2:LENGTH, 
 TERM^NUM2, 
 !access!, 
 !exclusion!, 
 NOWAIT^DEPTH); 
IF ERROR <> 0 THEN ... 
 . 
 . 
CALL WRITEREADX(TERM^NUM1, 
 BUFFER1,WCOUNT1, 
 RCOUNT1,TAG1); 
IF <> THEN ...
CALL WRITEREADX(TERM^NUM2, 
 BUFFER2,WCOUNT2, 
 RCOUNT2,TAG2); 
IF <> THEN ... 
 . 
 . 
ANY^FILE := -1; 
CALL AWAITIOX(ANY^FILE, 
 !buffer^address!, 
 BYTES, 
 TAG); 
 . 
 .
In the skeleton code shown above, the file number associated with the file of the 
completed I/O operation is returned in ANY^FILE. The program can now use the 
variable ANY^FILE to identify the active terminal, so it knows how to process the data 
read by this operation.  










