Guardian Programmer's Guide
Table Of Contents
- Guardian Programmer’s Guide
- Contents
- What’s New in This Manual
- About This Manual
- Legal Notices
- 1 Introduction to Guardian Programming
- 2 Using the File System
- 3 Coordinating Concurrent File Access
- 4 Using Nowait Input/Output
- 5 Communicating With Disk Files- Types of Disk Files
- Using Unstructured Files- Creating Unstructured Files
- Opening Unstructured Files
- Positioning, Reading, and Writing With Unstructured Files
- Locking With Unstructured Files
- Renaming Unstructured Files
- Avoiding Unnecessary Cache Flushes to Unstructured Files
- Closing Unstructured Files
- Purging Unstructured Files
- Altering Unstructured-File Attributes
 
- Using Relative Files
- Using Entry-Sequenced Files
- Using Key-Sequenced Files- Creating Key-Sequenced Files
- Opening Key-Sequenced Files
- Positioning, Reading, and Writing With Key-Sequenced Files
- Locking, Renaming, Caching, Closing, Purging, and Altering Key-Sequenced Files
- Key-Sequenced File Programming Example
- Using Alternate Keys With an Entry-Sequenced File
- Using Alternate Keys With a Key-Sequenced File
 
- Using Partitioned Files
- Using Alternate Keys
 
- 6 Communicating With Processes- Sending and Receiving Messages: An Introduction
- Sending Messages to Other Processes
- Queuing Messages on $RECEIVE
- Receiving and Replying to Messages From Other Processes
- Receiving Messages From Other Processes: One-Way Communication
- Handling Multiple Messages Concurrently
- Checking for Canceled Messages
- Receiving and Processing System Messages
- Handling Errors
- Communicating With Processes: Sample Programs
 
- 7 Using DEFINEs
- 8 Communicating With a TACL Process
- 9 Communicating With Devices
- 10 Communicating With Terminals
- 11 Communicating With Printers
- 12 Communicating With Magnetic Tape- Accessing Magnetic Tape: An Introduction
- Positioning the Tape
- Reading and Writing Tape Records
- Blocking Tape Records
- Working in Buffered Mode
- Working With Standard Labeled Tapes- Enabling Labeled Tape Processing
- Creating Labeled Tapes
- Checking for Labeled Tape Support
- Accessing Labeled Tapes
- Writing to the Only File on a Labeled Tape Volume
- Writing to a File on a Multiple-File Labeled Tape Volume
- Writing to a File on Multiple Labeled Tape Volumes
- Reading From the Only File on a Labeled Tape Volume
- Reading From a File on a Multiple-File Labeled Tape Volume
- Reading From a File on Multiple Labeled Tape Volumes
 
- Accessing a Labeled Tape File: An Example
- Working With Unlabeled Tapes
- Terminating Tape Access
- Recovering From Errors
- Accessing an Unlabeled Tape File: An Example
 
- 13 Manipulating File Names
- 14 Using the IOEdit Procedures
- 15 Using the Sequential Input/Output Procedures- An Introduction to the SIO Procedures
- Initializing SIO Files Using TAL or pTAL DEFINEs
- Opening and Creating SIO Files
- Getting Information About SIO Files
- Reading and Writing SIO Files
- Accessing EDIT Files
- Handling Nowait I/O
- Handling Interprocess Messages
- Handling System Messages
- Handling BREAK Ownership
- Handling SIO Errors
- Closing SIO Files
- Initializing SIO Files Without TAL or pTAL DEFINEs
- Using the SIO Procedures: An Example
 
- 16 Creating and Managing Processes
- 17 Managing Memory- An Introduction to Memory-Management Procedures
- Managing the User Data Areas
- Using (Extended) Data Segments- Overview of Selectable Segments
- Overview of Flat Segments
- Which Type of Segment Should You Use?
- Using Selectable Segments in TNS Processes
- Accessing Data in Extended Data Segments
- Attributes of Extended Data Segments
- Allocating Extended Data Segments
- Checking Whether an Extended Data Segment Is Selectable or Flat
- Making a Selectable Segment Current
- Referencing Data in an Extended Data Segment
- Checking the Size of an Extended Data Segment
- Changing the Size of an Extended Data Segment
- Transferring Data Between an Extended Data Segment and a File
- Moving Data Between Extended Data Segments
- Checking Address Limits of an Extended Data Segment
- Sharing an Extended Data Segment
- Determining the Starting Address of a Flat Segment
- Deallocating an Extended Data Segment
 
- Using Memory Pools
 
- 18 Managing Time
- 19 Formatting and Manipulating Character Data- Using the Formatter
- Manipulating Character Strings
- Programming With Multibyte Character Sets- Checking for Multibyte Character-Set Support
- Determining the Default Character Set
- Analyzing a Multibyte Character String
- Dealing With Fragments of Multibyte Characters
- Handling Multibyte Blank Characters
- Determining the Character Size of a Multibyte Character Set
- Case Shifting With Multibyte Characters
- Testing for Special Symbols
- Sample Program
 
 
- 20 Interfacing With the ERROR Program
- 21 Writing a Requester Program
- 22 Writing a Server Program
- 23 Writing a Command-Interpreter Monitor ($CMON)- Communicating With TACL Processes
- Controlling the Configuration of a TACL Process
- Controlling Logon and Logoff
- Controlling Passwords
- Controlling Process Creation
- Controlling Change of Process Priority
- Controlling Adding and Deleting Users
- Controlling $CMON While the System Is Running
- Writing a $CMON Program: An Example
- Debugging a TACL Monitor ($CMON)
 
- 24 Writing a Terminal Simulator
- 25 Debugging, Trap Handling, and Signal Handling
- 26 Synchronizing Processes
- 27 Fault-Tolerant Programming in C- Overview of Active Backup Programming
- Summary of Active Backup Processing
- What the Programmer Must Do
- C Extensions That Support Active Backup Programming- Starting the Backup Process
- Opening a File With a Specified Sync Depth
- Retrieving File Open State Information in the Primary Process
- Opening Files in the Backup Process
- Retrieving File State Information in the Primary Process
- Updating File State Information in the Backup Process
- Terminating the Primary and Backup Processes
 
- Organizing an Active Backup Program
- Updating State Information
- Providing Communication Between the Primary and Backup Processes
- Programming Considerations
- Comparison of Active Backup and Passive Backup
- Active Backup Example 1
- Active Backup Example 2
 
- 28 Using Floating-Point Formats- Differences Between Tandem and IEEE Floating-Point Formats
- Building and Running IEEE Floating-Point Programs
- Compiling and Linking Floating-Point Programs
- Link-Time Consistency Checking
- Run-Time Consistency Checking
- Run-Time Support
- Debugging Options
- Conversion Routines
- Floating-Point Operating Mode Routines
 
- A Mixed Data Model Programming
- Glossary
- Index

Using the File System
Guardian Programmer’s Guide — 421922-014
2 - 7
Process File Names
The device-name part of the name can be up to 8 characters long and must start 
with a dollar sign ($). Again, all characters must be alphanumeric, and the second 
character of the device-name part must be a letter. The qualifier is an optional 
alphanumeric string that always begins with the pound sign (#) character followed by 
an alphabetic character. The meaning of a qualifier depends on the device type.
We recommend using device names to identify devices. However, you can also 
identify a device using a logical device number that is an integer always preceded by a 
dollar sign. Five digits (up to 34492) are allowed in the logical device number.
Process File Names
Process file names have two forms: one for named processes and one for unnamed 
processes.
Process File Names for Named Processes
You can name a process at the same time you create the process either by specifying 
the NAME option of the RUN command or by specifying the name-option parameter 
when calling the PROCESS_CREATE_ procedure. You can accomplish the same 
thing with the PROCESS_LAUNCH_ procedure, although the equivalent parameters 
are passed as fields in a structure. Process creation is described in detail in 
Section 16, Creating and Managing Processes. 
Assigning a name to a process hides its location in the operating system and hides 
whether it can reference a process pair. A process name also makes interprocess 
communication easier, because the name that you pass to the FILE_OPEN_ 
procedure is already known. On the other hand, a process that wants to communicate 
with an unnamed process cannot have prior knowledge of the process file name; it 
must establish what the process file name is at run time, then pass it to the 
FILE_OPEN_ call. 
The syntax for file names for named processes follows:  
A named process is identified by an alphanumeric name in the process-name field. 
A process-name is made up of 1 to 5 alphanumeric characters beginning with a 
dollar sign ($). The character after the dollar sign must be a letter.
The optional sequence number (seq-no) enables instances of a process name to be 
distinguished over time. A specific process name often represents a service (for 
example, $S is a spooler collector), and the user does not care whether the service 
provider is the same instance as it was some time earlier; the user simply wants the 
service. The seq-no field is therefore often omitted. However, although failure and 
restart of a server is irrelevant to some requesters, it may be important to others. The 
Process file name, named process: 
[node-name.]process-name[:seq-no][.q1[.q2]]










