ServerNet Cluster 6780 Planning and Installation Guide (G06.28+, H06.05+)
Table Of Contents
- What’s New in This Guide
- About This Guide
- 1 ServerNet Cluster Overview
- 2 ServerNet Cluster Hardware Description
- 3 Planning for Installation and Migration
- Planning Checklist
- Software Installation Planning
- Hardware Installation and Migration Planning
- Task 1: Plan for the ServerNet Nodes
- Task 2: Plan for the System Consoles
- Task 3: Plan for the 6780 Switches
- Task 4: Plan for the Racks
- Task 5: Plan for the Power Requirements
- Task 6: Plan the Location of the Hardware
- Task 7: Plan for the Fiber-Optic Cables
- Task 8: Plan to Migrate the ServerNet Nodes From 6770 Switches
- Task 9: Plan the ServerNet Node Numbers
- Task 10: Plan the Expand-Over-ServerNet Lines
- Migration Examples
- 4 Preparing a System for Installation or Migration
- 5 Installing 6780 Switches
- 6 Connecting the Fiber-Optic Cables
- Summary of Tasks
- Handling the Fiber-Optic Cables
- Connecting the Layer Cables
- Connecting the Zone Cables
- Connecting the Cables Between a Node and a 6780 Switch
- Alerts
- Task 1: Double-Check the Required Software and Hardware
- Task 2: Label the Cables That Connect to the Node
- Task 3: Inspect the Cables
- Task 4: Connect a Cable to the Switch
- Task 5: Connect a Cable to the Node
- Task 6: Check the Link-Alive LEDs
- Task 7: Check Operations
- Task 8: Finish Connecting the Fiber-Optic Cables
- Routing the Fiber-Optic Cables
- 7 Configuring Expand-Over-ServerNet Lines
- Using Automatic Line-Handler Generation
- Using the OSM Service Connection
- Using SCF
- Rule 1: Configure the Primary and Backup Line-Handler Processes in Different Processor Enclosures
- Rule 2: For Nodes With 6 or More Processors, Avoid Configuring the Line-Handler Processes in Proc...
- Rule 3: For Nodes With More Than 10 Processors, Avoid Configuring the Line-Handler Processes in P...
- Expand-Over-ServerNet Line-Handler Process Example
- 8 Checking Operations
- Checking the Operation of the ServerNet Cluster
- Checking the Operation of Each Switch
- Checking the Power to Each Switch
- Checking the Switch Components
- Checking the Numeric Selector Setting
- Checking the Globally Unique ID (GUID)
- Checking for a Mixed Globally Unique ID (GUID)
- Checking the Fiber-Optic Cable Connections to the Switch Port
- Checking the Switch Configuration, Firmware, and FPGA Images
- Checking the Operation of Each Node
- Checking the Service Processor (SP) Firmware
- Checking That Automatic Line-Handler Generation Is Enabled
- Checking the ServerNet Node Numbers
- Checking MSGMON, SANMAN, and SNETMON
- Checking for Alarms on Each Node
- Checking the ServerNet Cluster Subsystem
- Checking That the ServerNet Node Numbers Are Consistent
- Checking Communications Between a Local Node and a Switch
- Checking Communications With a Remote Node
- Checking the Internal ServerNet X and Y Fabrics
- Checking the Operation of Expand Processes and Lines
- 9 Changing a ServerNet Cluster
- OSM Actions
- Removing a Node From a ServerNet Cluster
- Removing Switches From a ServerNet Cluster
- Adding a Node to a ServerNet Cluster
- Adding a Switch Layer to a ServerNet Cluster
- Adding a Switch Zone to a ServerNet Cluster
- Task 1: Prepare to Add the Switches
- Task 2: Connect the Cables Between Layers
- Task 3: Check Operations
- Task 4: Disconnect the Cables Between Zones
- Task 5: Connect the Cables Between Zones
- Task 6: Check Operations
- Task 7: Connect the Additional Nodes
- Task 8: Check Operations
- Task 9: Repeat Tasks 2 Through 8 for the Other Fabric
- Task 10: Reenable OSM Alarms
- Moving a Node
- Changing the Hardware in a Node Connected to a ServerNet Cluster
- 10 Troubleshooting
- Symptoms
- Recovery Operations
- Enabling Automatic Expand-Over-ServerNet Line-Handler Generation
- Reseating a Fiber-Optic Cable
- Correcting a Mixed Globally Unique ID (GUID)
- Restoring Connectivity to a Node
- Switching the SANMAN Primary and Backup Processes
- Switching the SNETMON Primary and Backup Processes
- Configuring the Expand-Over-ServerNet Line-Handler Processes and Lines
- Starting Required Processes and Subsystems
- Fallback Procedures
- 11 Starting and Stopping ServerNet Cluster Processes and Subsystems
- A Part Numbers
- B Blank Planning Forms
- C ESD Guidelines
- D Specifications
- E Configuring MSGMON, SANMAN, and SNETMON
- F Updating the 6780 Switch Logic Board Firmware, Configuration, and FPGA Images
- G Using the Long-Distance Option
- Safety and Compliance
- Glossary
- Index

Glossary
ServerNet Cluster 6780 Planning and Installation Guide—527301-005
Glossary-21
remote notification
remote notification. A form of remote support. Remote notification, or dial-out, allows the
OSM package to notify a service provider, such as the Global Customer Support
Center (GCSC), of pending hardware and software problems. See also remote
interprocessor communication (RIPC).
remote processor. A processor in a node other than the node running the ServerNet
cluster monitor (SNETMON) process reporting status about the processor.
remote node. Any system that is not the local node. Contrast with local node.
RIPC. See remote interprocessor communication (RIPC).
router. See ServerNet router.
router 1. See ServerNet router 1.
router 2. See ServerNet router 2.
SAC. See ServerNet addressable controller (SAC).
SANMAN. See external system area network manager process (SANMAN).
SCF. See Subsystem Control Facility (SCF).
SCL. The mnemonic name for the ServerNet cluster subsystem. See ServerNet cluster
subsystem.
SCP. See Subsystem Control Point (SCP).
SEB. See ServerNet expansion board (SEB).
SEB port. A connector used for ServerNet links. The ServerNet expansion board (SEB)
features six ECL-based ServerNet ports. See also MSEB port.
sensitive command. A Subsystem Control Facility (SCF) command that can be issued only
by a user with super-group access, by the owner of the subsystem, or by a member of
the group of the owner of the subsystem. The owner of a subsystem is the user who
started that subsystem (or any user whose application ID is the same as the server
ID—the result of a PROGID option that requires super-group access). Contrast with
nonsensitive command.
server. (1) An implementation of a system used as a stand-alone system or as a node in an
Expand network. (2) A combination of hardware and software designed to provide
services in response to requests received from clients across a network. For example,
the NonStop servers provide transaction processing, database access, and other
services. (3) A process or program that provides services to a client or a requester.
Servers are designed to receive request messages from clients or requesters; perform
the desired operations, such as database inquiries or updates, security verifications,
numerical calculations, or data routing to other computer systems; and return reply