ServerNet Cluster 6780 Planning and Installation Guide (G06.28+, H06.05+)
Table Of Contents
- What’s New in This Guide
- About This Guide
- 1 ServerNet Cluster Overview
- 2 ServerNet Cluster Hardware Description
- 3 Planning for Installation and Migration
- Planning Checklist
- Software Installation Planning
- Hardware Installation and Migration Planning
- Task 1: Plan for the ServerNet Nodes
- Task 2: Plan for the System Consoles
- Task 3: Plan for the 6780 Switches
- Task 4: Plan for the Racks
- Task 5: Plan for the Power Requirements
- Task 6: Plan the Location of the Hardware
- Task 7: Plan for the Fiber-Optic Cables
- Task 8: Plan to Migrate the ServerNet Nodes From 6770 Switches
- Task 9: Plan the ServerNet Node Numbers
- Task 10: Plan the Expand-Over-ServerNet Lines
- Migration Examples
- 4 Preparing a System for Installation or Migration
- 5 Installing 6780 Switches
- 6 Connecting the Fiber-Optic Cables
- Summary of Tasks
- Handling the Fiber-Optic Cables
- Connecting the Layer Cables
- Connecting the Zone Cables
- Connecting the Cables Between a Node and a 6780 Switch
- Alerts
- Task 1: Double-Check the Required Software and Hardware
- Task 2: Label the Cables That Connect to the Node
- Task 3: Inspect the Cables
- Task 4: Connect a Cable to the Switch
- Task 5: Connect a Cable to the Node
- Task 6: Check the Link-Alive LEDs
- Task 7: Check Operations
- Task 8: Finish Connecting the Fiber-Optic Cables
- Routing the Fiber-Optic Cables
- 7 Configuring Expand-Over-ServerNet Lines
- Using Automatic Line-Handler Generation
- Using the OSM Service Connection
- Using SCF
- Rule 1: Configure the Primary and Backup Line-Handler Processes in Different Processor Enclosures
- Rule 2: For Nodes With 6 or More Processors, Avoid Configuring the Line-Handler Processes in Proc...
- Rule 3: For Nodes With More Than 10 Processors, Avoid Configuring the Line-Handler Processes in P...
- Expand-Over-ServerNet Line-Handler Process Example
- 8 Checking Operations
- Checking the Operation of the ServerNet Cluster
- Checking the Operation of Each Switch
- Checking the Power to Each Switch
- Checking the Switch Components
- Checking the Numeric Selector Setting
- Checking the Globally Unique ID (GUID)
- Checking for a Mixed Globally Unique ID (GUID)
- Checking the Fiber-Optic Cable Connections to the Switch Port
- Checking the Switch Configuration, Firmware, and FPGA Images
- Checking the Operation of Each Node
- Checking the Service Processor (SP) Firmware
- Checking That Automatic Line-Handler Generation Is Enabled
- Checking the ServerNet Node Numbers
- Checking MSGMON, SANMAN, and SNETMON
- Checking for Alarms on Each Node
- Checking the ServerNet Cluster Subsystem
- Checking That the ServerNet Node Numbers Are Consistent
- Checking Communications Between a Local Node and a Switch
- Checking Communications With a Remote Node
- Checking the Internal ServerNet X and Y Fabrics
- Checking the Operation of Expand Processes and Lines
- 9 Changing a ServerNet Cluster
- OSM Actions
- Removing a Node From a ServerNet Cluster
- Removing Switches From a ServerNet Cluster
- Adding a Node to a ServerNet Cluster
- Adding a Switch Layer to a ServerNet Cluster
- Adding a Switch Zone to a ServerNet Cluster
- Task 1: Prepare to Add the Switches
- Task 2: Connect the Cables Between Layers
- Task 3: Check Operations
- Task 4: Disconnect the Cables Between Zones
- Task 5: Connect the Cables Between Zones
- Task 6: Check Operations
- Task 7: Connect the Additional Nodes
- Task 8: Check Operations
- Task 9: Repeat Tasks 2 Through 8 for the Other Fabric
- Task 10: Reenable OSM Alarms
- Moving a Node
- Changing the Hardware in a Node Connected to a ServerNet Cluster
- 10 Troubleshooting
- Symptoms
- Recovery Operations
- Enabling Automatic Expand-Over-ServerNet Line-Handler Generation
- Reseating a Fiber-Optic Cable
- Correcting a Mixed Globally Unique ID (GUID)
- Restoring Connectivity to a Node
- Switching the SANMAN Primary and Backup Processes
- Switching the SNETMON Primary and Backup Processes
- Configuring the Expand-Over-ServerNet Line-Handler Processes and Lines
- Starting Required Processes and Subsystems
- Fallback Procedures
- 11 Starting and Stopping ServerNet Cluster Processes and Subsystems
- A Part Numbers
- B Blank Planning Forms
- C ESD Guidelines
- D Specifications
- E Configuring MSGMON, SANMAN, and SNETMON
- F Updating the 6780 Switch Logic Board Firmware, Configuration, and FPGA Images
- G Using the Long-Distance Option
- Safety and Compliance
- Glossary
- Index

ServerNet Cluster Hardware Description
ServerNet Cluster 6780 Planning and Installation Guide—527301-005
2-6
Identifying Components in a 6780 Switch
The 13 slots in the rear of each 6780 switch contain PICs as shown in Figure 2-2.
6780 Switch Plug-In Cards (PIC)
The PICs share the common midplane interface and provide the physical interface for
each ServerNet link. For ServerNet clusters, the PICs in the 6780 switch provide a
variety of connections as described in Table 2-4, 6780 Switch PICs, on page 2-6 . For
information about PIC LEDs, refer to Firmware, Configuration, and FPGA Images on
page 2-16.
Single-mode fiber (SMF) can be used for high-speed long-distance signal
transmission. It provides greater bandwidth than multimode. Multimode fiber (MMF) is
optical fiber designed to carry multiple light rays or modes concurrently, each at a
slightly different reflection angle within the optical fiber core. Because the modes tend
to disperse over longer lengths, multimode fiber transmission is used for relatively
short distances.
Figure 2-2. Plug-In Cards
Table 2-4. 6780 Switch PICs (page 1 of 2)
PIC Type Function PIC Slot Number of PICs for Each Switch
Maintenance Connections to the
ports on this PIC are
not supported.
Slot 1 1
Dual SMF or
Quad MMF
Zone Interconnect Slots 2
and 3
2 for ServerNet clusters with two or
three zones
Dual SMF Node Interconnect
between a NonStop
S-series server and a
6780 switch
Slots 6
through 9
Up to 4 depending on the number of
NonStop S-series servers connected
to the 6780 switch
Plug-in Cards (PICs)
13
1234567
8 9 101112
PIC Slots
VST600.vsd