Datasheet, Version 2.1, 22 Feb 2005 PFC-DCM IC Boost Controller TDA4863-2/TDA4863-2G Power-Factor Controller (PFC) IC for High Power Factor and Low THD Power Management & Supply N e v e r s t o p t h i n k i n g .
TDA4863-2/TDA4863-2G Revision History: 2005-02-22 Datasheet Previous Version: V2.0 Page Subjects ( major changes since last revision ) Update package information For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http:// www.infineon.com CoolMOST™, CoolSET™ are trademarks of Infineon Technologies AG.
TDA4863-2 Table of Contents Page 1 1.1 1.2 1.3 1.4 1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Improvements Referred to TDA 4862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . .
Power-Factor Controller (PFC) IC for High Power Factor and Low THD TDA4863-2 Final Data 1 Overview 1.
TDA4863-2 Overview AC line RF-Filter and Rectifier DC Output Volage TDA4863-2 GND Figure 1 1.3 Typical application Description The TDA4863-2 IC controls a boost converter in a way that sinusoidal current is taken from the single phase line supply and stabilized DC voltage is available at the output. This active harmonic filter limits the harmonic currents resulting from the capacitor pulsed charge currents during rectification.
TDA4863-2 Overview 1.4 Figure 2 Version 2.
TDA4863-2 Overview Pin Definitions and Functions Pin Symbol 1 VSENSE Voltage Amplifier Inverting Input VSENSE is connected via a resistive divider to the boost converter output. With a capacitor connected to VAOUT the internal error amplifier acts as an integrator. 2 VAOUT Voltage Amplifier Output VVAOUT is connected internally to the first multiplier input. To prevent overshoot the input voltage is clamped internally at 5 V. IfVVAOUT is less then 2.2 V the gate driver is inhibited.
TDA4863-2 Overview 1.5 Block Diagram VCC GND DETIN tres=150us 5V 20V + - 0.5V + 12.5V 0.2V Restart Timer Clamp Current Reference Voltage Vref UVLO 10V - + Detector - Enable 1.0V RS Flip-Flop Gate Drive GTDRV 1.5V + 2.2V - Inhibit time delay Inhibit - tdVA=2us + LEB 2.5V + Voltage Amp Multiplier - multout + + 1V tdsd=70ns Current Comp 1V + 3.5V - Vref + uvlo active shut down - OVR 5.4V VSENSE Figure 3 Version 2.
TDA4863-2 Functional Description 2 Functional Description 2.1 Introduction Conventional electronic ballasts and switch mode power supplies are designed with a bridge rectifier and a bulk capacitor. Their disadvantage is that the circuit draws power from the line when the instantaneous AC voltage exceeds the capacitors voltage.
TDA4863-2 Functional Description 2.4 Overvoltage Regulator Because of the integrator´s low bandwidth fast changes of the output voltage can’t be regulated within an adequate time. Fast output changes occur during initial start-up, sudden load removal, or output arcing. While the integrator´s differential input voltage remains zero during this fast changes a peak current is flowing through the external capacitor into pin VAOUT.
TDA4863-2 Functional Description To prevent false tripping the zero current detector is designed as a Schmitt-Trigger with a hysteresis of 0.5 V. An internal 5 V clamp protects the input from overvoltage breakdown, a 0.6 V clamp prevents substrate injection. An external resistor has to be used in series with the auxiliary winding to limit the current through the clamps. 2.8 Restart Timer The restart timer function eliminates the need of an oscillator.
TDA4863-2 Functional Description 2.11 Signal Diagrams IVAOUT IOVR DETIN GTDRV LEB VISENSE multout Icoil Figure 4 Version 2.
TDA4863-2 Electrical Characteristics 3 Electrical Characteristics 3.1 Absolute Maximum Ratings Parameter Symbol Supply + Zener Current ICCH + IZ Supply Voltage VCC Limit Values min. Voltage at Pin 1,3,4 Current into Pin 2 Unit Remarks max. 20 mA -0.3 VZ V VZ = Zener Voltage ICC + IZ = 20 mA -0.3 6.5 mA VVAOUT = 4 V, VVSENSE = 2.8 V VVAOUT = 0 V, VVSENSE = 2.3 V t < 1 ms 30 IVAOUT -10 Current into Pin 5 IDETIN 10 DETIN > 6 V DETIN < 0.
TDA4863-2 Electrical Characteristics 3.2 Characteristics Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V Parameter Symbol Limit Values min. typ. max. 18 Unit Test Condition Start-Up circuit Zener Voltage VZ 20 22 V ICC + IZ = 20 mA Start-up Supply Current ICCL 20 100 µA VCC = VCCON -0.5 V Operating Supply Current ICCH 4 6 mA Output low VCC Turn-ON Threshold VCCON 12 12.5 13 V VCC Turn-OFF Threshold VCCOFF 9.5 10 10. 5 VCC Hysteresis VCCHY 2.
TDA4863-2 Electrical Characteristics 3.2 Characteristics (cont’d) Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V Parameter Symbol Limit Values Unit Test Condition 45 µA Tj = 25°C , VVAOUT = 3.5 V 1 µA VISENSE = 0 V mV VVAOUT = 2.7 V VMULTIN = 0 V min. typ. max. IOVR 35 40 Input Bias Current IBISENSE -1 -0.2 Input Offset Voltage (Tj = 25 °C) VISENSEO 25 Max Threshold Voltage VISENSEM 0.95 1.0 Threshold at OVR VISENOVR 0.
TDA4863-2 Electrical Characteristics 3.2 Characteristics (cont’d) Unless otherwise stated, -40°C < Tj < 150°C, VCC = 14.5 V Parameter Symbol Limit Values min. typ. max. 100 160 250 Unit Test Condition Restart Timer Restart time tRES µs Gate Drive Gate drive voltage low state VGTL 0.85 V IGT = 0 mA VGTL 1.0 V IGT = 2 mA 1.7 IGT = 20 mA 2.2 IGT = 200 mA Gate drive voltage high state VGTH 10.
TDA4863-2 Electrical Characteristics 3.3 Electrical Diagrams Icc versus Vcc VCCON/OFF versus Temperature 5 14 4,5 13 4 VCC ON 12 3,5 Vcc / V Icc / mA 3 2,5 VCC OFF 2 VCC ON 11 10 VCC OFF 1,5 9 1 8 0,5 0 7 0 5 10 15 20 -40 0 Vcc/V 80 120 160 Tj / °C Iccl versus Vcc ICCL versus Temperature, VCC = 10 V 50 50 45 45 40 40 35 35 30 30 ICCL / uA Iccl / uA 40 25 25 20 20 15 15 10 10 5 5 0 0 0 2 4 6 8 10 12 14 16 -40 Vcc / V Version 2.
TDA4863-2 Electrical Characteristics VFB versus Temperature (pin1 connected to pin2) Open Loop Gain and Phase versus Frequency Phi/deg GV/dB 2,55 180 120 2,54 160 2,53 Gv 100 140 2,52 VFB / V 120 80 2,51 100 2,5 60 Phi 2,49 80 40 2,48 60 2,47 40 20 2,46 20 2,45 -40 0 40 80 120 0 0,01 160 0,1 1 10 Tj / °C 100 0 1000 10000 f/kHz Overvoltage Regulator VISENSE versus Threshold Voltage Leading Edge Blanking versus Temperature 300 1,2 VVAOUT = 3.
TDA4863-2 Electrical Characteristics Current Sense Threshold VISENSE versus VMULTIN Current Sense Threshold VISENSE versus VVAOUT 1 1 4.5V 0,9 Vmultin=4.0 0,9 4.0V 0,8 3.0 0,8 3.5V 0,7 0,7 0,6 0,6 2.0 VISENSE / V VISENSE/ V 1.5 3.25V 0,5 0,4 0,3 1.0 0,5 0,4 0.5 0,3 3.0V 0,2 0,2 0,1 0,1 VAOUT=2.75V 0.
TDA4863-2 Electrical Characteristics Gate Drive Rise Time and Fall Time versus Temperature Gate Drive Voltage High State versus Vcc 12 140 IGT =-2mA 11,5 120 IGT =-20mA 11 rise time 10,5 V GTH / V rise time / ns 100 80 IGT =-200mA 10 60 9,5 fall time 40 9 20 8,5 8 0 -40 0 40 80 120 11 160 13 15 Vcc / V Tj / °C Gate Drive Voltage Low State versus IGT 1,8 TDA4863-2 1,6 1,4 V GTL / V 1,2 1 0,8 dotted line: TDA4863 0,6 0,4 0,2 0 0 2 4 6 8 10 IGT / mA Version 2.
TDA4863-2 Application Circuit 4 Application Circuit Application circuit: Pout=110W, universal Input Vin=90-270V AC L1=750uH E36/11,N27; gap=2mm W1=85 turns,d=40x0.1 W2=17 turns, d=0.3 D5 MR856 RF filter Vin and 90-270V AC rectifier Vout 410V DC D7 D6 C13 3.3n 400V R12 470 R8A 120k R8B 120k R9 33k R6A 470k C10 47uF 25V 8 C9 220n 7 6 R10 12 CoolMOS SPP04N60C3 0.95 Ohm C8 47uF 450V 5 R4A 422k TDA4863-2 R6B 470k 1 2 3 4 R4B 422k C1 1u R7 9.1k R7 9.1k Figure 5 Version 2.
TDA4863-2 Application Circuit 4.1 Results of THD Measurements with Application Board Pout = 110 W Current RMS(Amps) (Measurements according to IEC61000-3-2. 150% limit (red line): Momentary measured value must be below this limit. 100% limit (blue line): Average of measured values must be below this limit. The worst measured momentary value is shown in the diagrams.
TDA4863-2 Current RMS(Amps) Application Circuit 0,175 0,150 0,125 0,100 0,075 0,050 0,025 0,000 4 Current RMS(Amps) Figure 8 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 270 V, Iout = 250 mA, Vaout = 420 V, PF = 0.978 0,30 0,25 0,20 0,15 0,10 0,05 0,00 4 Figure 9 Version 2.1 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 90 V, Iout = 140 mA, Vaout = 420 V, PF = 0.
TDA4863-2 Current RMS(Amps) Application Circuit 0,125 0,100 0,075 0,050 0,025 0,000 4 Current RMS(Amps) Figure 10 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 220 V, Iout = 140 mA, Vaout = 420 V, PF = 0.975 0,10 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0,00 4 Figure 11 Version 2.1 8 12 16 20 24 Harmonic # 28 32 36 40 THD Class C: Pmax = 110 W, Vinac = 270 V, Iout = 140 mA, Vaout = 420 V, PF = 0.
TDA4863-2 Package Outlines 5 Package Outlines 2.54 0.46 ±0.1 0.35 8x 8 7.87 ±0.38 0.25 +0.1 3.25 MIN. 0.38 MIN. 1.7 MAX. 4.37 MAX. PG-DIP-8-4 (Plastic Dual In-line Package) 6.35 ±0.25 1) 8.9 ±1 5 1 4 9.52 ±0.25 1) 1) Does not include plastic or metal protrusion of 0.25 max. per side GPD05583 Index Marking Figure 12 Version 2.
TDA4863-2 Package Outlines PG-DSO-8-3 (Plastic Dual Small Outline) 1.27 0.1 0.41 +0.1 -0.05 +0.05 -0.01 0.2 C 0.64 ±0.25 0.2 M A C x8 8 5 Index Marking 1 4 5 -0.21) 8˚ MAX. 4 -0.21) 1.75 MAX. 0.1 MIN. (1.5) 0.33 ±0.08 x 45˚ 6 ±0.2 A Index Marking (Chamfer) Does not include plastic or metal protrusion of 0.15 max. per side GPS09032 1) Figure 13 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products.
Total Quality Management Qualität hat für uns eine umfassende Bedeutung. Wir wollen allen Ihren Ansprüchen in der bestmöglichen Weise gerecht werden. Es geht uns also nicht nur um die Produktqualität – unsere Anstrengungen gelten gleichermaßen der Lieferqualität und Logistik, dem Service und Support sowie allen sonstigen Beratungs- und Betreuungsleistungen. Quality takes on an allencompassing significance at Semiconductor Group.