Data Sheet, Rev. 1.2, Nov.
TLE7269G Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Twin LIN Transceiver 1 TLE7269G Overview Features • • • • • • • • • • • • • • • • Two stand-alone LIN transceivers up to 20 kBaud transmission rate Pin compatible to single LIN Transceivers (e.g TLE7259-2GE/GU) Compliant to LIN specification 1.3, 2.0, 2.
TLE7269G Block Diagram 2 Block Diagram VS 14 INH1 13 8 RBUS INH2 Driver Output Stage 1 TxD Input Current Limit Bus1 12 4 Timeout TxD1 VS RTD Receiver 6 VIO Filter 1 Mode Control Temp Sensor 2 Filter 3 EN REN Wake and Bus Comparators WK RxD1 9 VS W2O RW2O Receiver VIO Filter 7 RxD2 10 Bus2 Driver 5 TxD Input RBUS Current Limit Output Stage 2 Timeout RTD 11 VS Figure 1 Data Sheet TxD2 GND Functional Block Diagram 4 Rev. 1.
TLE7269G Pin Configuration 3 Pin Configuration 3.1 Pin Assignment Figure 2 RxD1 1 14 INH1 EN 2 13 VS WK 3 12 BUS1 TxD1 4 11 GND TxD2 5 10 BUS2 V IO 6 9 W2O RxD2 7 8 INH2 Pin Configuration (top view) Note: The pin configuration of the TLE7269G is pin compatible to the devices TLE7259G and TLE7259-2GE/GU. In comparison to the TLE7259G and the TLE 7259-2GE/GU, no pull up resistors on the RxD pins are required for the TLE7269G.
TLE7269G Pin Configuration Table 1 Pin Definitions and Functions (cont’d) Pin No.
TLE7269G Functional Description 4 Functional Description The LIN Bus is a single wire, bi-directional bus, used for in-vehicle networks. The LIN Transceiver TLE7269G is the interface between the microcontroller and the physical LIN Bus (see Figure 17 and Figure 18). The logical values of the microcontroller are driven to the LIN bus via the TxD inputs of the TLE7269G.
TLE7269G Functional Description 4.1 Operating Modes Start-Up Power-Up Note 1: TxD1: TxD1: Note 2: RxD1: Strong Pull Down > 1.
TLE7269G Functional Description The TLE7269G has 3 major operation modes: • • • Stand-By mode Normal Operation mode Sleep mode The Normal Operation mode contains 3 sub-operation modes, which differentiate by the slew rate control of the LIN Bus signal (see Figure 4). Sub-operation modes with different slew rates on the BUS1,BUS2 pins: • • • Low Slope mode, for data transmission rates up to 10.
TLE7269G Functional Description 4.2.1 Normal Slope Mode In Normal Slope mode data transmission rates up to 20 kBauds are possible. Setting the EN pin to “High” starts the transition to Normal Operation mode. Depending on the signal on the TxD1 pin, the TLE7269G changes either into Normal Slope mode or Low Slope mode (see Figure 5). The mode change to Normal Slope mode is defined by the time tMODE and the time tTXD,SET.
TLE7269G Functional Description . VEN,ON EN Data transmission TxD1 Mode Transition tTxD,SET tto,rec tMODE Stand-By Mode / Sleep Mode Figure 6 Timing to enter Low Slope Mode 4.2.3 Flash Mode Low Slope Mode In Flash mode it is possible to transmit and receive LIN messages on the LIN bus. The slew rate control mechanism of the LIN bus signal is disabled. This allows higher data transmission rates, disregarding the EMC limitations of the LIN network.
TLE7269G Functional Description 4.3 Stand-By Mode The Stand-By mode is entered automatically after: • • • • • A Power-Up event on the supply VS. A bus Wake-Up event on pin BUS1 or pin BUS2. A local Wake-Up event on the pin WK. A power on reset caused by power supply VS or by the power supply VIO In Stand-By mode the Wake-Up sources are monitored by the TxD1, RxD1 and RxD2 pins. In Stand-By mode no communication on the LIN Bus is possible.
TLE7269G Functional Description 4.4 Sleep Mode In order to reduce the current consumption the TLE7269G offers a Sleep mode. In Sleep mode the quiescent current on VS and the leakage current on the pins BUS1 and BUS2 are cut back to a minimum. To switch the TLE7269G from Normal Operation mode to Sleep mode, the EN pin has to be set to “Low”. Conversely a logical “High” on the EN pin sets the device directly back to Normal Operation mode (see Figure 4).
TLE7269G Functional Description 4.7 Bus Wake-Up via LIN bus 1 and bus 2 LIN BUS1 or BUS2 Signal VBUS1 &2 VBUS,wk VBUS,dom tWK,bus Sleep Mode Stand-By Mode INH1/ INH2 Figure 8 Bus Wake-Up behavior The bus Wake-Up event, often called remote Wake-Up, changes the operation mode from Sleep mode to StandBy mode. The TLE7269G wakes-up via a bus Wake-Up event on either the pin BUS1 or BUS2. The bus WakeUp behavior is identical on both pins.
TLE7269G Functional Description 4.8 Local Wake-Up WK Signal VWK VWK,L tWK Stand-By Mode Sleep Mode INH1/ INH2 Figure 9 Local Wake-Up behavior Beside the remote Wake-Up, a Wake-Up of the TLE7269G via the WK pin is possible. This type of Wake-Up event is called “Local Wake Up”. A falling edge on the WK pin followed by a “Low” signal for t > tWK results in a local Wake-Up (see Figure 9) and changes the operation mode to Stand-By mode.
TLE7269G Functional Description A transition from logical “High” to logical “Low” on the EN pin changes the operation mode from Normal Operation mode to Sleep mode. If the TLE7269G is already in Sleep mode, changing the EN from “Low” to “High” results into a mode change from Sleep mode to Normal Operation mode. If the device is in Stand-By mode a change from “Low” to “High” on the EN pin changes the mode to Normal Operation mode (see Figure 4). 4.
TLE7269G Functional Description In Stand-By mode the RxD1 pin signals the low power supply condition with a “High” signal. A logical “High” on the EN pin changes the operation mode back to Normal Operation mode. In case the supply voltage VS is dropping below the specified operation range (see Table 5), the TLE7269G disables the output and receiver stages. This feature secures the communication on the LIN bus.
TLE7269G Functional Description 4.12 Over Temperature protection The TLE7269G has one integrated over temperature sensor to protect the device against thermal overstress on the output stage 1 and output stage 2. In case of an over temperature event, the temperature sensor will disable both output stages (see Figure 1). An over temperature event will not cause any mode change nor will it be signaled by either the RxD pins or the TxD pins.
TLE7269G General Product Characteristics 5 General Product Characteristics 5.1 Absolute Maximum Ratings Table 4 Absolute Maximum Ratings1) All voltages with respect to ground; positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Max. Unit Remarks Voltages 5.1.1 Battery supply voltage VS -0.3 40 V LIN Spec 2.1 Param. 10 5.1.2 Logic supply voltage VIO -0.3 5.5 V – 5.1.
TLE7269G General Product Characteristics 5.2 Functional Range Table 5 Operating Range Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Remarks Supply voltages 5.2.1 Supply Voltage Range for VS(nor) Normal Operation 7 – 27 V LIN Spec 2.1 Param. 10 5.2.2 Extended Supply Voltage range for operation VS(ext) 5 – 40 V Parameter deviations possible 5.2.3 Supply voltage VIO VIO 3 – 5.5 V – Tj -40 – 150 °C 1) Thermal parameters 5.2.
TLE7269G Electrical Characteristics 6 Electrical Characteristics 6.1 Functional Device Characteristics Table 7 Electrical Characteristics 7.0 V < VS < 27 V; RL = 500 Ω; Vio = 5V; -40 °C < Tj < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Unit Remarks Min. Typ. Max. Current Consumption 6.1.1 Current consumption at VS(both channels recessive) IS,rec 0.5 1.6 3.
TLE7269G Electrical Characteristics Table 7 Electrical Characteristics (cont’d) 7.0 V < VS < 27 V; RL = 500 Ω; Vio = 5V; -40 °C < Tj < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Unit Remarks Min. Typ. Max. – VIO Transmission Inputs: TxD1, TxD2 6.1.13 HIGH level input voltage range VTD,H 0.7 × 6.1.14 Input hysteresis VTD,hys – VIO 0.
TLE7269G Electrical Characteristics Table 7 Electrical Characteristics (cont’d) 7.0 V < VS < 27 V; RL = 500 Ω; Vio = 5V; -40 °C < Tj < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Min. Typ. Unit Remarks Max. Wake Input: WK 6.1.33 High level input voltage VWK,H VS - 1 V – VS + 3V V VS = 13.5 V; 6.1.34 Low level input voltage VWK,L -0.3 – VS - 4 V V 6.1.
TLE7269G Electrical Characteristics Table 7 Electrical Characteristics (cont’d) 7.0 V < VS < 27 V; RL = 500 Ω; Vio = 5V; -40 °C < Tj < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Unit Remarks Min. Typ. Max. -1 – – mA VS = 18 V; VBUS = 0 V; LIN Spec 2.1 (Par. 13) – 20 µA VS = 8 V; VBUS = 18 V; LIN Spec 2.1 (Par. 14) Normal mode LIN Spec 2.1 (Par. 26) 6.1.52 Leakage current IBUS_PAS_dom 6.
TLE7269G Electrical Characteristics Table 7 Electrical Characteristics (cont’d) 7.0 V < VS < 27 V; RL = 500 Ω; Vio = 5V; -40 °C < Tj < 125 °C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Pos. Parameter Symbol Limit Values Unit Remarks Min. Typ. Max. 6.1.65 Duty cycle D1 (for worst case at 20 kBit/s) D1 0.396 – – – duty cycle 1 6) THRec(max) = 0.744 × VS; THDom(max) =0.581 × VS; VS = 7.
TLE7269G Electrical Characteristics 6.2 Diagrams VS EN 100 nF INH1 TxD1 RBus RxD1 CRxD WK Bus1 CBus Vio INH2 RBus W2O TxD2 Bus2 RxD2 GND CRxD CBus Figure 13 Simplified test circuit for dynamic characteristics VS EN 100 nF INH1 TxD1 RxD1 CRxD RBus WK Bus1 CBus Vio INH2 RBus W2O TxD2 Bus2 RxD2 GND CBus Figure 14 Data Sheet CRxD Simplified test circuit for static characteristics 26 Rev. 1.
TLE7269G Electrical Characteristics tBit TxD tBit tBit (input to transmitting node) tBus_dom(max) VSUP (Transceiver supply of transmitting node) tBus_rec(min) THRec(max) THDom(max) Thresholds of receiving node 1 THRec(min) THDom(min) Thresholds of receiving node 2 tBus_dom(min) tBus_rec(max) RxD (output of receiving node 1) trx_pdf(1) trx_pdr(1) RxD (output of receiving node 2) trx_pdr(2) trx_pdf(2) Duty Cycle 1 = tBUS_rec(min) / (2 x tBIT) Duty Cycle 2 = tBUS_rec(max) / (2 x tBIT) Fig
TLE7269G Application Information 7 Application Information 7.1 ESD Robustness according to IEC61000-4-2 Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 Ω) have been performed. The results and test conditions are available in a separate test report.
TLE7269G Application Information 7.3 Master Termination To achieve the required timings for the dominant to recessive transition of the bus signal an additional external termination resistor of 1 kΩ is mandatory. It is recommended to place this resistor at the master node. To avoid reverse currents from the bus line into the battery supply line it is recommended to place a diode in series with the external pull-up.
TLE7269G Application Information 7.5 Application Example VBat 22 µF 100 nF VI VQ INH LIN BUS1 LIN BUS2 100 nF VS Master Node for Lin Bus1 & LIN Bus2 TLE7269G INH2 10 µF e.g. TLE4678 WK 5 V or 3.3V VIO INH1 GND EN 100 nF 33 nF W2O 1 kΩ 1 kΩ BUS1 BUS2 1 nF Micro Controller e.g XC22xx RxD1 TxD1 GND RxD2 TxD2 GND 1 nF ECU1 22 µF 100 nF VI VQ INH 100 nF VS Slave Node for Lin Bus1 & LIN Bus2 TLE7269G INH2 BUS2 Figure 17 Data Sheet 5 V or 3.
TLE7269G Application Information VBat Master Node for Lin Bus1 & LIN Bus2 22 µF 100 nF VI VQ INH LIN BUS1 100 nF VS TLE7269G LIN BUS2 INH1 N.C. 10 µF e.g. TLE4678 WK 5 V or 3.3V VIO INH2 GND EN 100 nF 33 nF W2O 1 kΩ 1 kΩ BUS1 BUS2 1 nF Micro Controller e.g XC22xx RxD1 TxD1 GND RxD2 TxD2 GND 1 nF ECU1 22 µF 100 nF VI VQ INH 100 nF VS Slave Node for Lin Bus1 & LIN Bus2 TLE7269G INH1 N.C. 10 µF e.g. TLE4678 WK 5 V or 3.
TLE7269G Package Outlines 8 Package Outlines GPS09032 Figure 19 PG-DSO-14 (Plastic Dual Small Outline PG-DSO-14-24) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Edition 2007-11-13 Published by Infineon Technologies AG 81726 Munich, Germany © 2007 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.
TLE7269G Revision History 9 Revision History Revision Date Changes 1.2 2007-10-02 Data Sheet created Data Sheet 34 Rev. 1.