Intel 64 and IA-32 Architectures Software Developers Manual Volume 3B, System Programming Guide Part 2
Table Of Contents
- Chapter 18 Debugging and Performance Monitoring
- 18.1 Overview of Debug Support Facilities
- 18.2 Debug Registers
- 18.3 Debug Exceptions
- 18.4 Last Branch Recording Overview
- 18.5 Last Branch, Interrupt, and Exception Recording (Intel® Core™2 Duo and Intel® Atom™ Processor Family)
- 18.6 Last Branch, Interrupt, and Exception Recording (Intel® Core™i7 Processor Family)
- 18.7 Last Branch, Interrupt, and Exception Recording (Processors based on Intel NetBurst® Microarchitecture)
- 18.7.1 CPL-Qualified Branch Trace Mechanism
- 18.7.2 MSR_DEBUGCTLA MSR
- 18.7.3 LBR Stack for Processors Based on Intel NetBurst Microarchitecture
- 18.7.4 Monitoring Branches, Exceptions, and Interrupts
- 18.7.5 Single-Stepping on Branches, Exceptions, and Interrupts
- 18.7.6 Branch Trace Messages
- 18.7.7 Last Exception Records
- 18.7.8 Branch Trace Store (BTS)
- 18.8 Last Branch, Interrupt, and Exception Recording (Intel® Core™ Solo and Intel® Core™ Duo Processors)
- 18.9 Last Branch, Interrupt, and Exception Recording (Pentium M Processors)
- 18.10 Last Branch, Interrupt, and Exception Recording (P6 Family Processors)
- 18.11 Time-Stamp Counter
- 18.12 Performance Monitoring Overview
- 18.13 Architectural Performance Monitoring
- 18.14 Performance Monitoring (Intel® Core™ Solo and Intel® Core™ Duo Processors)
- 18.15 Performance Monitoring (Processors based on Intel® Core™ Microarchitecture)
- 18.16 Performance Monitoring (Processors based on Intel® Atom™ Microarchitecture)
- 18.17 Performance Monitoring for Processors based on Intel® Microarchitecture (Nehalem)
- 18.18 Performance Monitoring (Processors Based on Intel NetBurst microarchitecture)
- 18.18.1 ESCR MSRs
- 18.18.2 Performance Counters
- 18.18.3 CCCR MSRs
- 18.18.4 Debug Store (DS) Mechanism
- 18.18.5 DS Save Area
- 18.18.6 Programming the Performance Counters for Non-Retirement Events
- 18.18.6.1 Selecting Events to Count
- 18.18.6.2 Filtering Events
- 18.18.6.3 Starting Event Counting
- 18.18.6.4 Reading a Performance Counter’s Count
- 18.18.6.5 Halting Event Counting
- 18.18.6.6 Cascading Counters
- 18.18.6.7 EXTENDED CASCADING
- 18.18.6.8 Generating an Interrupt on Overflow
- 18.18.6.9 Counter Usage Guideline
- 18.18.7 At-Retirement Counting
- 18.18.8 Precise Event-Based Sampling (PEBS)
- 18.18.9 Operating System Implications
- 18.19 Performance Monitoring and Intel Hyper- Threading Technology in Processors Based on Intel NetBurst Microarchitecture
- 18.20 Counting Clocks
- 18.21 Performance Monitoring, Branch Profiling and System Events
- 18.22 Performance Monitoring and Dual-Core Technology
- 18.23 Performance Monitoring on 64-bit Intel Xeon Processor MP with Up to 8-MByte L3 Cache
- 18.24 Performance Monitoring on L3 and Caching Bus Controller sub-systems
- 18.25 Performance Monitoring (P6 Family Processor)
- 18.26 Performance Monitoring (Pentium Processors)
- Chapter 19 Introduction to Virtual-Machine Extensions
- Chapter 20 Virtual-Machine Control Structures
- 20.1 Overview
- 20.2 Format of the VMCS Region
- 20.3 Organization of VMCS Data
- 20.4 Guest-State Area
- 20.5 Host-State Area
- 20.6 VM-Execution Control Fields
- 20.6.1 Pin-Based VM-Execution Controls
- 20.6.2 Processor-Based VM-Execution Controls
- 20.6.3 Exception Bitmap
- 20.6.4 I/O-Bitmap Addresses
- 20.6.5 Time-Stamp Counter Offset
- 20.6.6 Guest/Host Masks and Read Shadows for CR0 and CR4
- 20.6.7 CR3-Target Controls
- 20.6.8 Controls for APIC Accesses
- 20.6.9 MSR-Bitmap Address
- 20.6.10 Executive-VMCS Pointer
- 20.6.11 Extended-Page-Table Pointer (EPTP)
- 20.6.12 Virtual-Processor Identifier (VPID)
- 20.7 VM-Exit Control Fields
- 20.8 VM-Entry Control Fields
- 20.9 VM-Exit Information Fields
- 20.10 Software Access to the VMCS and Related Structures
- 20.11 Using VMCLEAR to Initialize a VMCS Region
- Chapter 21 VMX Non-Root Operation
- 21.1 Instructions That Cause VM Exits
- 21.2 APIC-Access VM Exits
- 21.3 Other Causes of VM Exits
- 21.4 Changes to Instruction Behavior in VMX Non- Root Operation
- 21.5 APIC Accesses That Do Not Cause VM Exits
- 21.6 Other Changes in VMX Non-Root Operation
- 21.7 Features Specific to VMX Non-Root Operation
- Chapter 22 VM Entries
- 22.1 Basic VM-Entry Checks
- 22.2 Checks on VMX Controls and Host-State Area
- 22.3 Checking and Loading Guest State
- 22.3.1 Checks on the Guest State Area
- 22.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs
- 22.3.1.2 Checks on Guest Segment Registers
- 22.3.1.3 Checks on Guest Descriptor-Table Registers
- 22.3.1.4 Checks on Guest RIP and RFLAGS
- 22.3.1.5 Checks on Guest Non-Register State
- 22.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries
- 22.3.2 Loading Guest State
- 22.3.3 Clearing Address-Range Monitoring
- 22.3.1 Checks on the Guest State Area
- 22.4 Loading MSRs
- 22.5 Event Injection
- 22.6 Special Features of VM Entry
- 22.6.1 Interruptibility State
- 22.6.2 Activity State
- 22.6.3 Delivery of Pending Debug Exceptions after VM Entry
- 22.6.4 VMX-Preemption Timer
- 22.6.5 Interrupt-Window Exiting
- 22.6.6 NMI-Window Exiting
- 22.6.7 VM Exits Induced by the TPR Shadow
- 22.6.8 Pending MTF VM Exits
- 22.6.9 VM Entries and Advanced Debugging Features
- 22.7 VM-Entry Failures During or After Loading Guest State
- 22.8 Machine Checks During VM Entry
- Chapter 23 VM Exits
- 23.1 Architectural State Before a VM Exit
- 23.2 Recording VM-Exit Information and Updating VM-Entry Control Fields
- 23.3 Saving Guest State
- 23.4 Saving MSRs
- 23.5 Loading Host State
- 23.5.1 Loading Host Control Registers, Debug Registers, MSRs
- 23.5.2 Loading Host Segment and Descriptor-Table Registers
- 23.5.3 Loading Host RIP, RSP, and RFLAGS
- 23.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries
- 23.5.5 Updating Non-Register State
- 23.5.6 Clearing Address-Range Monitoring
- 23.6 Loading MSRs
- 23.7 VMX Aborts
- 23.8 Machine Check During VM Exit
- Chapter 24 Support for Address Translation
- 24.1 Virtual Processor Identifiers (VPIDs)
- 24.2 Extended Page Tables (EPT)
- 24.3 Caching Translation Information
- Chapter 25 System Management
- 25.1 System Management Mode Overview
- 25.2 System Management Interrupt (SMI)
- 25.3 Switching Between SMM and the Other Processor Operating Modes
- 25.4 SMRAM
- 25.5 SMI Handler Execution Environment
- 25.6 Exceptions and Interrupts Within SMM
- 25.7 Managing Synchronous and Asynchronous System Management Interrupts
- 25.8 NMI Handling While in SMM
- 25.9 SMM Revision Identifier
- 25.10 Auto HALT Restart
- 25.11 SMBASE Relocation
- 25.12 I/O Instruction Restart
- 25.13 SMM Multiple-Processor Considerations
- 25.14 Default Treatment of SMIs and SMM with VMX Operation and SMX Operation
- 25.15 Dual-Monitor Treatment of SMIs and SMM
- 25.15.1 Dual-Monitor Treatment Overview
- 25.15.2 SMM VM Exits
- 25.15.3 Operation of an SMM Monitor
- 25.15.4 VM Entries that Return from SMM
- 25.15.4.1 Checks on the Executive-VMCS Pointer Field
- 25.15.4.2 Checks on VM-Execution Control Fields
- 25.15.4.3 Checks on VM-Entry Control Fields
- 25.15.4.4 Checks on Guest Non-Register State
- 25.15.4.5 Loading Guest State
- 25.15.4.6 VMX-Preemption Timer
- 25.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers
- 25.15.4.8 VM Exits Induced by VM Entry
- 25.15.4.9 SMI Blocking
- 25.15.4.10 Failures of VM Entries That Return from SMM
- 25.15.5 Enabling the Dual-Monitor Treatment
- 25.15.6 Activating the Dual-Monitor Treatment
- 25.15.7 Deactivating the Dual-Monitor Treatment
- 25.16 SMI and Processor Extended State Management
- Chapter 26 Virtual-Machine Monitor Programming Considerations
- 26.1 VMX System Programming Overview
- 26.2 Supporting Processor Operating Modes in Guest Environments
- 26.3 Managing VMCS Regions and Pointers
- 26.4 Using VMX Instructions
- 26.5 VMM Setup & Tear Down
- 26.6 Preparation and Launching a Virtual Machine
- 26.7 Handling of VM Exits
- 26.8 Multi-Processor Considerations
- 26.9 32-Bit and 64-Bit Guest Environments
- 26.10 Handling Model Specific Registers
- 26.11 Handling Accesses to Control Registers
- 26.12 Performance Considerations
- Chapter 27 Virtualization of System Resources
- 27.1 Overview
- 27.2 Virtualization Support for Debugging Facilities
- 27.3 Memory Virtualization
- 27.4 Microcode Update Facility
- Chapter 28 Handling Boundary Conditions in a Virtual Machine Monitor
- Appendix A Performance-Monitoring Events
- A.1 Architectural Performance-Monitoring Events
- A.2 Performance Monitoring Events for Intel® Intel® Core™i7 Processor Family
- A.3 Performance Monitoring Events for Intel® Xeon® Processor 5200, 5400 Series and Intel® Core™2 Extreme ProcessorS QX 9000 Series
- A.4 Performance Monitoring Events for Intel® Xeon® Processor 3000, 3200, 5100, 5300 Series and Intel® Core™2 Duo ProcessorS
- A.5 Performance Monitoring Events for Intel® Atom™ ProcessorS
- A.6 Performance Monitoring Events for Intel® Core™ Solo and Intel® Core™ Duo ProcessorS
- A.7 Pentium 4 and Intel Xeon Processor Performance-Monitoring Events
- A.8 Performance Monitoring Events for Intel® Pentium® M ProcessorS
- A.9 P6 Family Processor Performance- Monitoring Events
- A.10 Pentium Processor Performance- Monitoring Events
- Appendix B Model-Specific Registers (MSRs)
- B.1 Architectural MSRs
- B.2 MSRs In the Intel® Core™ 2 Processor Family
- B.3 MSRs In the Intel® Atom™ Processor Family
- B.4 MSRs In the Intel® Microarchitecture (Nehalem)
- B.5 MSRs In the Pentium® 4 and Intel® Xeon® Processors
- B.6 MSRs In Intel® Core™ Solo and Intel® Core™ Duo Processors
- B.7 MSRs In the Pentium M Processor
- B.8 MSRs In the P6 Family Processors
- B.9 MSRs in Pentium Processors
- Appendix C MP Initialization For P6 Family Processors
- Appendix D Programming the LINT0 and LINT1 Inputs
- Appendix E Interpreting Machine-Check Error Codes
- E.1 Incremental Decoding Information: Processor Family 06H Machine Error Codes For Machine Check
- E.2 Incremental Decoding Information: Intel Core 2 Processor Family Machine Error Codes For Machine Check
- E.3 Incremental Decoding Information: Processor Family with CPUID DisplayFamily_DisplayModel Signature 06_1AH, Machine Error Codes For Machine Check
- E.4 Incremental Decoding Information: Processor Family 0FH Machine Error Codes For Machine Check
- Appendix F APIC Bus Message Formats
- Appendix G VMX Capability Reporting Facility
- Appendix H Field Encoding in VMCS
- Appendix I VMX Basic Exit Reasons
Vol. 3B Index -5
INDEX
introduction to, 2-9
invalidation of non-global TLBs, 3-51
loading during initialization, 8-13
memory management, 2-8
page directory base address, 2-8
page table base address, 2-7
CR4 control register
description of, 2-17
enabling control functions, 17-2
inclusion in IA-32 architecture, 17-24
introduction to, 2-9
VMX usage of, 19-4
CR8 register, 2-9
64-bit mode, 2-18
compatibility mode, 2-18
description of, 2-18
task priority level bits, 2-26
when available, 2-18
CS register, 17-14
state following initialization, 8-6
C-state, 13-8
CTR0 and CTR1 (performance counters) MSRs
(Pentium processor), 18-148, 18-150
Current privilege level (see CPL)
D
D (default operation size) flag
segment descriptor, 16-2, 17-38
D (dirty) flag, page-table entries, 3-32
Data breakpoint exception conditions, 18-12
Data segments
description of, 3-16
descriptor layout, 4-3
expand-down type, 3-15
paging of, 2-8
privilege level checking when accessing, 4-11
DE (debugging extensions) flag, CR4 control register,
2-23, 17-24, 17-27
Debug exception (#DB), 5-10, 5-29, 6-6, 18-9, 18-29,
18-41
Debug store (see DS)
DEBUGCTLMSR MSR, 18-39, 18-41, B-163
Debugging facilities
breakpoint exception (#BP), 18-1
debug exception (#DB), 18-1
DR6 debug status register, 18-1
DR7 debug control register, 18-1
exceptions, 18-9
INT3 instruction, 18-1
last branch, interrupt, and exception recording,
18-2, 18-14
masking debug exceptions, 5-10
overview of, 18-1
performance-monitoring counters, 18-44
registers
description of, 18-2
introduction to, 2-9
loading, 2-31
RF (resume) flag, EFLAGS, 18-1
see DS (debug store) mechanism
T (debug trap) flag, TSS, 18-1
TF (trap) flag, EFLAGS, 18-1
virtualization, 27-1
VMX operation, 27-2
DEC instruction, 7-5
Denormal operand exception (#D), 17-13
Denormalized operand, 17-17
Device-not-available exception (#NM), 2-21, 2-30,
5-36, 8-8, 17-15, 17-16
DFR
Destination Format Register, 9-18, 9-25, 9-49
Digital readout bits, 13-19
DIV instruction, 5-28
Divide configuration register, local APIC, 9-36, 9-37
Divide-error exception (#DE), 5-28, 17-29
Double-fault exception (#DF), 5-38, 17-30
DPL (descriptor privilege level) field, segment
descriptor, 3-14, 4-2, 4-5, 4-10
DR0-DR3 breakpoint-address registers, 18-1, 18-4,
18-37, 18-40, 18-41
DR4-DR5 debug registers, 17-27, 18-4
DR6 debug status register, 18-4
B0-B3 (BP detected) flags, 18-4
BD (debug register access detected) flag, 18-4
BS (single step) flag, 18-4
BT (task switch) flag, 18-4
debug exception (#DB), 5-29
reserved bits, 17-27
DR7 debug control register, 18-5
G0-G3 (global breakpoint enable) flags, 18-5
GD (general detect enable) flag, 18-5
GE (global exact breakpoint enable) flag, 18-5
L0-L3 (local breakpoint enable) flags, 18-5
LE local exact breakpoint enable) flag, 18-5
LEN0-LEN3 (Length) fields, 18-6
R/W0-R/W3 (read/write) fields, 17-27, 18-5
DS feature flag, CPUID instruction, 18-18, 18-23,
18-36, 18-38
DS save area, 18-99, 18-101, 18-102
DS (debug store) mechanism
availability of, 18-97
description of, 18-97
DS feature flag, CPUID instruction, 18-97
DS save area, 18-97, 18-101
IA-32e mode, 18-101
interrupt service routine (DS ISR), 18-34
setting up, 18-31
Dual-core technology
architecture, 7-46
logical processors supported, 7-36
MTRR memory map, 7-47
multi-threading feature flag, 7-36
performance monitoring, 18-129
specific features, 17-5
Dual-monitor treatment, 25-26