Intel Pentium 4 Processor in the 478-PinPackage at 1.40 GHz, 1.50 GHz, 1.60 GHz, 1.70 GHz, 1.80 GHz, 1.90 GHz, and 2GHz

Pin Listing and Signal Definitions
Datasheet 73
INIT# Input
INIT# (Initialization), when asserted, resets integer registers inside the processor
without affecting its internal caches or floating-point registers. The processor
then begins execution at the power-on Reset vector configured during power-on
configuration. The processor continues to handle snoop requests during INIT#
assertion. INIT# is an asynchronous signal and must connect the appropriate
pins of all processor system bus agents.
If INIT# is sampled active on the active to inactive transition of RESET#, then the
processor executes its Built-in Self-Test (BIST).
ITPCLKOUT[1:0] Output
The ITPCLKOUT[1:0] pins do not provide any output for the Pentium® 4
processor in the 478-pin package. Refer to Section 2.5 for additional details and
termination requirements.
ITP_CLK[1:0] Input
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems
where no debug port is implemented on the system board. ITP_CLK[1:0] are
used as BCLK[1:0] references for a debug port implemented on an interposer. If
a debug port is implemented in the system, ITP_CLK[1:0] are no connects in the
system. These are not processor signals.
LINT[1:0] Input
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC
Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a
maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable
interrupt. INTR and NMI are backward compatible with the signals of those
names on the Pentium processor. Both signals are asynchronous.
Both of these signals must be software configured via BIOS programming of the
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the
APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is
the default configuration.
LOCK#
Input/
Output
LOCK# indicates to the system that a transaction must occur atomically. This
signal must connect the appropriate pins of all processor system bus agents. For
a locked sequence of transactions, LOCK# is asserted from the beginning of the
first transaction to the end of the last transaction.
When the priority agent asserts BPRI# to arbitrate for ownership of the processor
system bus, it will wait until it observes LOCK# deasserted. This enables
symmetric agents to retain ownership of the processor system bus throughout
the bus locked operation and ensure the atomicity of lock.
MCERR#
Input/
Output
MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error
without a bus protocol violation. It may be driven by all processor system bus
agents.
MCERR# assertion conditions are configurable at a system level. Assertion
options are defined by the following options:
Enabled or disabled.
Asserted, if configured, for internal errors along with IERR#.
Asserted, if configured, by the request initiator of a bus transaction
after it observes an error.
Asserted by any bus agent when it observes an error in a bus
transaction.
For more details regarding machine check architecture, please refer to the IA-32
Software Developer’s Manual, Volume 3: System Programming Guide.
PROCHOT# Output
PROCHOT# will go active when the processor temperature monitoring sensor
detects that the processor has reached its maximum safe operating temperature.
This indicates that the processor Thermal Control Circuit has been activated, if
enabled. See Section 7.3 for more details.
Table 32. Signal Description (Sheet 5 of 8)
Name Type Description