Datasheet

LTC2265-12/
LTC2264-12/LTC2263-12
25
22654312fb
APPLICATIONS INFORMATION
Digital Output Randomizer
Interference from the A/D digital outputs is sometimes
unavoidable. Digital interference may be from capacitive or
inductive coupling or coupling through the ground plane.
Even a tiny coupling factor can cause unwanted tones
in the ADC output spectrum. By randomizing the digital
output before it is transmitted off chip, these unwanted
tones can be randomized which reduces the unwanted
amplitude.
The digital output is randomized by applying an exclu-
sive-OR logic operation between the LSB and all other
data output bits. To decode, the reverse operation is
appliedan exclusive-OR operation is applied between
the LSB and all other bits. The FR and DCO outputs are
not affected. The output randomizer is enabled by serially
programming mode control register A1.
Digital Output Test Pattern
To allow in-circuit testing of the digital interface to the
A/D, there is a test mode that forces the A/D data outputs
(D11-D0, D
X
, D
Y
) of all channels to known values. The
digital output test patterns are enabled by serially program-
ming mode control registers A3 and A4. When enabled,
the test patterns override all other formatting modes: 2’s
complement and randomizer.
Output Disable
The digital outputs may be disabled by serially program-
ming mode control register A2. The current drive for all
digital outputs, including DCO and FR, are disabled to save
power or enable in-circuit testing. When disabled, the com-
mon mode of each output pair becomes high impedance,
but the differential impedance may remain low.
Sleep and Nap Modes
The A/D may be placed in sleep or nap modes to conserve
power. In sleep mode the entire chip is powered down,
resulting in 1mW power consumption. Sleep mode is
enabled by mode control register A1 (serial program-
ming mode), or by SDI (parallel programming mode).
The amount of time required to recover from sleep mode
depends on the size of the bypass capacitors on V
REF
,
REFH and REFL. For the suggested values in Figure 8, the
A/D will stabilize after 2ms.
In nap mode any combination of A/D channels can be
powered down while the internal reference circuits and the
PLL stay active, allowing faster wake-up than from sleep
mode. Recovering from nap mode requires at least 100
clock cycles. If the application demands a very accurate DC
settling, then an additional 50µs should be allowed so the
on-chip references can settle from the slight temperature
shift caused by the change in supply current as the A/D
leaves nap mode. Nap mode is enabled by the mode control
register A1 in the serial programming mode.
DEVICE PROGRAMMING MODES
The operating modes of the LTC2265-12/LTC2264-12/
LTC2263-12 can be programmed by either a parallel
interface or a simple serial interface. The serial interface
has more flexibility and can program all available modes.
The parallel interface is more limited and can only program
some of the more commonly used modes.
Parallel Programming Mode
To use the parallel programming mode, PAR/SER should
be tied to V
DD
. The CS, SCK, SDI and SDO pins are binary
logic inputs that set certain operating modes. These pins
can be tied to V
DD
or ground, or driven by 1.8V, 2.5V or
3.3V CMOS logic. When used as an input, SDO should
be driven through a 1k series resistor. Table 3 shows the
modes set by CS, SCK, SDI and SDO.
Table 3. Parallel Programming Mode Control Bits (PAR/SER = V
DD
)
PIN DESCRIPTION
CS 2-Lane/1-Lane Selection Bit
0 = 2-Lane, 16-Bit Serialization Output Mode
1 = 1-Lane, 14-Bit Serialization Output Mode
SCK LVDS Current Selection Bit
0 = 3.5mA LVDS Current Mode
1 = 1.75mA LVDS Current Mode
SDI Power Down Control Bit
0 = Normal Operation
1 = Sleep Mode
SDO Internal Termination Selection Bit
0 = Internal Termination Disabled
1 = Internal Termination Enabled