Datasheet

LTC3728
27
3728fg
APPLICATIONS INFORMATION
loop. The output voltage settling behavior is related to the
stability of the closed-loop system and will demonstrate
the actual overall supply performance.
A second, more severe transient is caused by switching
in loads with large (>1µF) supply bypass capacitors. The
discharged bypass capacitors are effectively put in parallel
with C
OUT
, causing a rapid drop in V
OUT
. No regulator can
alter its delivery of current quickly enough to prevent this
sudden step change in output voltage if the load switch
resistance is low and it is driven quickly. If the ratio of
C
LOAD
to C
OUT
is greater than 1:50, the switch rise time
should be controlled so that the load rise time is limited to
approximately 25 • C
LOAD
. Thus, a 10µF capacitor would
require a 250µs rise time, limiting the charging current
to about 200mA.
Automotive Considerations: Plugging into the
Cigarette Lighter
As battery-powered devices go mobile, there is a natural
interest in plugging into the cigarette lighter in order to
conserve or even recharge battery packs during opera-
tion. But before you connect, be advised: you are plug-
ging into the supply from hell. The main power line in an
automobile is the source of a number of nasty potential
transients, including load-dump, reverse-battery and
double-battery.
Load-dump is the result of a loose battery cable. When the
cable breaks connection, the fi eld collapse in the alterna-
tor can cause a positive spike as high as 60V which takes
several hundred milliseconds to decay. Reverse-battery is
just what it says, while double-battery is a consequence of
tow truck operators fi nding that a 24V jump start cranks
cold engines faster than 12V.
The network shown in Figure 9 is the most straight for-
ward approach to protect a DC/DC converter from the
ravages of an automotive power line. The series diode
prevents current from fl owing during reverse-battery,
while the transient suppressor clamps the input voltage
during load-dump. Note that the transient suppressor
should not conduct during double-battery operation, but
must still clamp the input voltage below breakdown of the
converter. Although the LTC3728 has a maximum input
voltage of 36V, most applications will be limited to 30V
by the MOSFET BVDSS.
Figure 9. Automotive Application Protection
V
IN
3728 F09
LTC3728
TRANSIENT VOLTAGE
SUPPRESSOR
GENERAL INSTRUMENT
1.5KA24A
50A I
PK
RATING
12V