Specifications
Table Of Contents
- Introduction
 - LTI Models
 - Operations on LTI Models
 - Model Analysis Tools
 - Arrays of LTI Models
 - Customization
 - Setting Toolbox Preferences
 - Setting Tool Preferences
 - Customizing Response Plot Properties
 - Design Case Studies
 - Reliable Computations
 - GUI Reference
 - SISO Design Tool Reference
- Menu Bar
- File
 - Import
 - Export
 - Toolbox Preferences
 - Print to Figure
 - Close
 - Edit
 - Undo and Redo
 - Root Locus and Bode Diagrams
 - SISO Tool Preferences
 - View
 - Root Locus and Bode Diagrams
 - System Data
 - Closed Loop Poles
 - Design History
 - Tools
 - Loop Responses
 - Continuous/Discrete Conversions
 - Draw a Simulink Diagram
 - Compensator
 - Format
 - Edit
 - Store
 - Retrieve
 - Clear
 - Window
 - Help
 
 - Tool Bar
 - Current Compensator
 - Feedback Structure
 - Root Locus Right-Click Menus
 - Bode Diagram Right-Click Menus
 - Status Panel
 
 - Menu Bar
 - LTI Viewer Reference
 - Right-Click Menus for Response Plots
 - Function Reference
- Functions by Category
 - acker
 - allmargin
 - append
 - augstate
 - balreal
 - bode
 - bodemag
 - c2d
 - canon
 - care
 - chgunits
 - connect
 - covar
 - ctrb
 - ctrbf
 - d2c
 - d2d
 - damp
 - dare
 - dcgain
 - delay2z
 - dlqr
 - dlyap
 - drss
 - dsort
 - dss
 - dssdata
 - esort
 - estim
 - evalfr
 - feedback
 - filt
 - frd
 - frdata
 - freqresp
 - gensig
 - get
 - gram
 - hasdelay
 - impulse
 - initial
 - interp
 - inv
 - isct, isdt
 - isempty
 - isproper
 - issiso
 - kalman
 - kalmd
 - lft
 - lqgreg
 - lqr
 - lqrd
 - lqry
 - lsim
 - ltimodels
 - ltiprops
 - ltiview
 - lyap
 - margin
 - minreal
 - modred
 - ndims
 - ngrid
 - nichols
 - norm
 - nyquist
 - obsv
 - obsvf
 - ord2
 - pade
 - parallel
 - place
 - pole
 - pzmap
 - reg
 - reshape
 - rlocus
 - rss
 - series
 - set
 - sgrid
 - sigma
 - sisotool
 - size
 - sminreal
 - ss
 - ss2ss
 - ssbal
 - ssdata
 - stack
 - step
 - tf
 - tfdata
 - totaldelay
 - zero
 - zgrid
 - zpk
 - zpkdata
 
 - Index
 

Creating LTI Models
2-9
where num and den are row vectors listing the coefficients of the polynomials
and , respectively, when these polynomials are ordered in descending
powers of s. The resulting variable
h is a TF object containing the numerator
and denominator data.
For example, you can create the transfer function by
typing
h = tf([1 0],[1 2 10])
MATLAB responds with
Transfer function:
 s
--------------
s^2 + 2 s + 10
Note the customized display used for TF objects.
You can also specify transfer functions as rational expressions in the Laplace
variable s by:
1 Defining the variable s as a special TF model
s = tf('s');
2 Entering your transfer function as a rational expression in s
For example, once s is defined with tf as in 1,
H = s/(s^2 + 2*s +10);
produces the same transfer function as
h = tf([1 0],[1 2 10]); 
Note You need only define the variable s as a TF model once. All of the
subsequent models you create using rational expressions of
s are specified as
TF objects, unless you convert the variable
s to ZPK. See “Model Conversion”
on page 2-40 for more information.
ns
()
ds
()
hs
()
ss
2
2s 10++
()⁄
=










