User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
 
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
 
- Control Design Tools
- The Root Locus Design GUI- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
 
- Design Case Studies
- Reliable Computations
- Reference- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
 
- Index

LQG Regulation
9-47
MIMO LQG Design
Start with the complete two-axis state-space model Pc derived above. The
model inputs and outputs are
Pc.inputname
ans = 
 'u-x'
 'u-y'
 'w-ex'
 'w-ix'
 'w_ey'
 'w_iy'
P.outputname
ans = 
 'x-gap'
 'y-gap'
 'x-force'
 'y-force'
As earlier, add low-pass filters in series with the 'x-gap' and 'y-gap' outputs
to penalize only low-frequency thickness variations.
Pdes = append(lpf,lpf,eye(2)) * Pc
Pdes.outputn = Pc.outputn
Next, design the LQ gain and state estimator as before (there are now two
commands a nd two measurements).
k = lqry(Pdes(1:2,1:2),eye(2),1e–4*eye(2)) % LQ gain
est = kalman(Pdes(3:4,:),eye(4),1e3*eye(2))   % Kalman estimator
RegMIMO = lqgreg(est,k)   % form MIMO LQG regulator










