User`s guide
Table Of Contents
- Preface
 - Quick Start
 - LTI Models
- Introduction
 - Creating LTI Models
 - LTI Properties
 - Model Conversion
 - Time Delays
 - Simulink Block for LTI Systems
 - References
 
 - Operations on LTI Models
 - Arrays of LTI Models
 - Model Analysis Tools
 - The LTI Viewer
- Introduction
 - Getting Started Using the LTI Viewer: An Example
 - The LTI Viewer Menus
 - The Right-Click Menus
 - The LTI Viewer Tools Menu
 - Simulink LTI Viewer
 
 - Control Design Tools
 - The Root Locus Design GUI
- Introduction
 - A Servomechanism Example
 - Controller Design Using the Root Locus Design GUI
 - Additional Root Locus Design GUI Features
 - References
 
 - Design Case Studies
 - Reliable Computations
 - Reference
- Category Tables
 - acker
 - append
 - augstate
 - balreal
 - bode
 - c2d
 - canon
 - care
 - chgunits
 - connect
 - covar
 - ctrb
 - ctrbf
 - d2c
 - d2d
 - damp
 - dare
 - dcgain
 - delay2z
 - dlqr
 - dlyap
 - drmodel, drss
 - dsort
 - dss
 - dssdata
 - esort
 - estim
 - evalfr
 - feedback
 - filt
 - frd
 - frdata
 - freqresp
 - gensig
 - get
 - gram
 - hasdelay
 - impulse
 - initial
 - inv
 - isct, isdt
 - isempty
 - isproper
 - issiso
 - kalman
 - kalmd
 - lft
 - lqgreg
 - lqr
 - lqrd
 - lqry
 - lsim
 - ltiview
 - lyap
 - margin
 - minreal
 - modred
 - ndims
 - ngrid
 - nichols
 - norm
 - nyquist
 - obsv
 - obsvf
 - ord2
 - pade
 - parallel
 - place
 - pole
 - pzmap
 - reg
 - reshape
 - rlocfind
 - rlocus
 - rltool
 - rmodel, rss
 - series
 - set
 - sgrid
 - sigma
 - size
 - sminreal
 - ss
 - ss2ss
 - ssbal
 - ssdata
 - stack
 - step
 - tf
 - tfdata
 - totaldelay
 - zero
 - zgrid
 - zpk
 - zpkdata
 
 - Index
 

connect
11-36
Given the matrices of the state-space model sys2
A = [ –9.0201 17.7791 
–1.6943 3.2138 ];
B = [ –.5112 .5362
–.002 –1.8470];
C = [ –3.2897 2.4544
–13.5009 18.0745];
D = [–.5476 –.1410
–.6459 .2958 ];
Define the three blocks as individual LTI models.
sys1 = tf(10,[1 5],'inputname','uc')
sys2 = ss(A,B,C,D,'inputname',{'u1' 'u2'},...
'outputname',{'y1' 'y2'})
sys3 = zpk(–1,–2,2)
Next append these blocks to form the unconnected model sys.
sys = append(sys1,sys2,sys3)
This produces the block-diagonal model
sys
a = 
    x1  x2  x3  x4
  x1  -5   0   0   0
 x2  0 -9.0201  17.779  0
 x3  0 -1.6943  3.2138  0
  x4  0   0   0  -2
b = 
    uc  u1  u2   ?
  x1   4   0   0   0
 x2  0 -0.5112  0.5362  0
  x3  0 -0.002 -1.847  0
  x4  0   0  0  1.4142










