User`s guide
Table Of Contents
- Preface
 - Quick Start
 - LTI Models
- Introduction
 - Creating LTI Models
 - LTI Properties
 - Model Conversion
 - Time Delays
 - Simulink Block for LTI Systems
 - References
 
 - Operations on LTI Models
 - Arrays of LTI Models
 - Model Analysis Tools
 - The LTI Viewer
- Introduction
 - Getting Started Using the LTI Viewer: An Example
 - The LTI Viewer Menus
 - The Right-Click Menus
 - The LTI Viewer Tools Menu
 - Simulink LTI Viewer
 
 - Control Design Tools
 - The Root Locus Design GUI
- Introduction
 - A Servomechanism Example
 - Controller Design Using the Root Locus Design GUI
 - Additional Root Locus Design GUI Features
 - References
 
 - Design Case Studies
 - Reliable Computations
 - Reference
- Category Tables
 - acker
 - append
 - augstate
 - balreal
 - bode
 - c2d
 - canon
 - care
 - chgunits
 - connect
 - covar
 - ctrb
 - ctrbf
 - d2c
 - d2d
 - damp
 - dare
 - dcgain
 - delay2z
 - dlqr
 - dlyap
 - drmodel, drss
 - dsort
 - dss
 - dssdata
 - esort
 - estim
 - evalfr
 - feedback
 - filt
 - frd
 - frdata
 - freqresp
 - gensig
 - get
 - gram
 - hasdelay
 - impulse
 - initial
 - inv
 - isct, isdt
 - isempty
 - isproper
 - issiso
 - kalman
 - kalmd
 - lft
 - lqgreg
 - lqr
 - lqrd
 - lqry
 - lsim
 - ltiview
 - lyap
 - margin
 - minreal
 - modred
 - ndims
 - ngrid
 - nichols
 - norm
 - nyquist
 - obsv
 - obsvf
 - ord2
 - pade
 - parallel
 - place
 - pole
 - pzmap
 - reg
 - reshape
 - rlocfind
 - rlocus
 - rltool
 - rmodel, rss
 - series
 - set
 - sgrid
 - sigma
 - size
 - sminreal
 - ss
 - ss2ss
 - ssbal
 - ssdata
 - stack
 - step
 - tf
 - tfdata
 - totaldelay
 - zero
 - zgrid
 - zpk
 - zpkdata
 
 - Index
 

lqr
11-121
11lqr
Purpose Design linear-quadratic ( LQ) state-feedback regulator for continuous plant
Syntax [K,S,e] = lqr(A,B,Q,R)
[K,S,e] = lqr(A,B,Q,R,N)
Description [K,S,e] = lqr(A,B,Q,R,N) calculates theoptimal gainmatrix K suchthatthe
state-feedback law
minimizes the quadratic cost function
for the continuous-time state-space model
The default value
N=0 is assumed when N is omitted.
In addition to the state-feedback gain
K, lqr returns the solution S of the
associated Riccati equation
and the closed-loop eigenvalues
 e = eig(A–B*K). Note that is derived from
by
Limitations The problem data must satisfy:
• The pair is stabilizable.
• and .
• has no unobservable mode on the imaginary
axis .
uKx
–=
Ju() x
T
Qx u
T
Ru 2x
T
Nu++()td
0
∞
∫
=
x
·
Ax Bu+=
A
T
SSA SBN+()R
1
–
B
T
SN
T
+()– Q++0=
K
S
KR
1
–
B
T
SN
T
+()=
AB
,()
R0
> QNR
1
–
N
T
– 0≥
QNR
1
–
N
T
– ABR
1
–
N
T
–,()










