User`s guide
Table Of Contents
- Preface
- Quick Start
- LTI Models- Introduction
- Creating LTI Models
- LTI Properties
- Model Conversion
- Time Delays
- Simulink Block for LTI Systems
- References
 
- Operations on LTI Models
- Arrays of LTI Models
- Model Analysis Tools
- The LTI Viewer- Introduction
- Getting Started Using the LTI Viewer: An Example
- The LTI Viewer Menus
- The Right-Click Menus
- The LTI Viewer Tools Menu
- Simulink LTI Viewer
 
- Control Design Tools
- The Root Locus Design GUI- Introduction
- A Servomechanism Example
- Controller Design Using the Root Locus Design GUI
- Additional Root Locus Design GUI Features
- References
 
- Design Case Studies
- Reliable Computations
- Reference- Category Tables
- acker
- append
- augstate
- balreal
- bode
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drmodel, drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocfind
- rlocus
- rltool
- rmodel, rss
- series
- set
- sgrid
- sigma
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
 
- Index

2 LTI Models
2-16
to which MATLAB responds
a = 
 x1  x2
 x1 0 1.00000
 x2 –5.00000 –2.00000
b = 
 u1
 x1 0
 x2 3.00000
c = 
 x1  x2
 y1 0 1.00000
d = 
 u1
 y1 0
In addition to the A, B, C,andDmatrices, the display of state-space models
includes stat e names, input names, and o utput names. Default names (here,
x1, x2, u1,andy1) are displayed whenever you l eave these unspecified. See
“LTI Properties” on page 2-26 for more information on how to specify state,
input, or output names.
Descriptor State-Space Models 
Descrip tor state- space (DSS) models are a generalization of the standard
state-space models discussed above. They are of the form
The Control System Toolbox supports only descriptor systems with a
nonsingular matrix. W h ile such models hav e an equivale nt explicit form
E
xd
td
------
Ax Bu+=
yCxDu+=
E
xd
td
------ E
1–
A()xE
1–
B()u+=
yCxDu+=










