User`s guide
Table Of Contents
- Preface
 - Quick Start
 - LTI Models
- Introduction
 - Creating LTI Models
 - LTI Properties
 - Model Conversion
 - Time Delays
 - Simulink Block for LTI Systems
 - References
 
 - Operations on LTI Models
 - Arrays of LTI Models
 - Model Analysis Tools
 - The LTI Viewer
- Introduction
 - Getting Started Using the LTI Viewer: An Example
 - The LTI Viewer Menus
 - The Right-Click Menus
 - The LTI Viewer Tools Menu
 - Simulink LTI Viewer
 
 - Control Design Tools
 - The Root Locus Design GUI
- Introduction
 - A Servomechanism Example
 - Controller Design Using the Root Locus Design GUI
 - Additional Root Locus Design GUI Features
 - References
 
 - Design Case Studies
 - Reliable Computations
 - Reference
- Category Tables
 - acker
 - append
 - augstate
 - balreal
 - bode
 - c2d
 - canon
 - care
 - chgunits
 - connect
 - covar
 - ctrb
 - ctrbf
 - d2c
 - d2d
 - damp
 - dare
 - dcgain
 - delay2z
 - dlqr
 - dlyap
 - drmodel, drss
 - dsort
 - dss
 - dssdata
 - esort
 - estim
 - evalfr
 - feedback
 - filt
 - frd
 - frdata
 - freqresp
 - gensig
 - get
 - gram
 - hasdelay
 - impulse
 - initial
 - inv
 - isct, isdt
 - isempty
 - isproper
 - issiso
 - kalman
 - kalmd
 - lft
 - lqgreg
 - lqr
 - lqrd
 - lqry
 - lsim
 - ltiview
 - lyap
 - margin
 - minreal
 - modred
 - ndims
 - ngrid
 - nichols
 - norm
 - nyquist
 - obsv
 - obsvf
 - ord2
 - pade
 - parallel
 - place
 - pole
 - pzmap
 - reg
 - reshape
 - rlocfind
 - rlocus
 - rltool
 - rmodel, rss
 - series
 - set
 - sgrid
 - sigma
 - size
 - sminreal
 - ss
 - ss2ss
 - ssbal
 - ssdata
 - stack
 - step
 - tf
 - tfdata
 - totaldelay
 - zero
 - zgrid
 - zpk
 - zpkdata
 
 - Index
 

tf
11-229
engineers use the variable a nd order the numerator and denominator terms
in descending powers of , for example,
The polynomials and are then specified by the row vectors
[1 0 0] and [1 2 3], respectively. By contrast, DSP engineers prefer to write
this trans fer function as
and specify its numerator as
1 (instead of [1 0 0]) and its denominator as
[1 2 3].
tf switches convention based on your choice of variable (value of the
'Variable' property).
For example,
g = tf([1 1],[1 2 3],0.1)
specifies the discrete transfer function
because is the default variable. In contrast,
h = tf([1 1],[1 2 3],0.1,'variable','z^–1')
Variable Convention
'z'
(default) Use the row vector [ak ... a1 a0] to specify the
polynomial (coefficients ordered in
descending powers of ).
'z^–1', 'q' Use the row vector [b0 b1 ... bk] to specify t he
polynomial (coefficients in
ascending powers of or ).
z
z
hz()
z
2
z
2
2z 3++
----------------------------=
z
2
z
2
2 z 3++
hz
1–
()
1
12z
1–
3z
2–
++
----------------------------------------=
a
k
z
k
... a
1
za
0
++ +
z
b
0
b
1
z
1
–
... b
k
z
k
–
+++
z
1
–
q
gz()
z 1
+
z
2
2z 3++
----------------------------=
z










