User`s guide
Modified Covariance AR Estimator
5-314
5Modified Covariance AR Estimator
Purpose Compute an estimate of AR model parameters using the modified covariance 
method.
Library Estimation / Parametric Estimation
Description The Modified Covariance AR Estimator block uses the modified covariance 
method to fit an autoregressive (AR) model to the input data. This method 
minimizes the forward and backward prediction errors in the least-squares 
sense. The input is a frame of consecutive time samples, which is assumed to 
be the output of an AR system driven by white noise. The block computes the 
normalized estimate of the AR system parameters, A(z), independently for each 
successive input. 
The order, p, of the all-pole model is specified by the 
Order parameter. 
The top output, 
A, contains the normalized estimate of the AR model 
coefficients in descending powers of z,
[1 a(2) ... a(p+1)]
The scalar gain, G, is provided at the bottom output (G).
Dialog Box
Estimation order
The order of the AR model, p. 
References Kay, S. M. Modern Spectral Estimation: Theory and Application. Englewood 
Cliffs, NJ: Prentice-Hall, 1988.
Hz()
G
Az()
------------
G
1 a 2()z
1–
… ap 1+()z
p–
+++
-------------------------------------------------------------------------------==










