Datasheet

71M6541D/F/G and 71M6542F/G Data Sheet
32 Rev 4
To change the slot assignments established by MUXn_SEL[3:0], first set MUX_DIV[3:0] to zero,
then change the MUXn_SEL[3:0] slot assignments, and finally set MUX_DIV[3:0] to the number
of active MUX frame slots.
The 80515 writes into external data memory when the MPU executes a MOVX @Ri,A or MOVX
@DPTR,A instruction. The MPU reads external data memory by executing a MOVX A,@Ri or MOVX
A,@DPTR instruction (PDATA, SFR 0xBF, provides the upper 8 bytes for the MOVX A,@Ri instruction).
Internal and External Memory Map
Table 10 shows the address, type, use and size of the various memory components.
Table 10: Memory Map
Address
(hex)
Memory
Technology
Memory
Type
Name Typical Usage
Memory Size
(bytes)
0000-7FFF Flash Memory Non-volatile
Program memory
for MPU and CE
MPU Program and
non-volatile data
128/64/32 KB
CE program (on 1
KB boundary)
3 KB max.
0000-0BFF Static RAM Volatile
External RAM
(XRAM)
Shared by CE and
MPU
5/3 KB
2000-27FF Static RAM Volatile
Configuration
RAM (I/O RAM)
Hardware control 2 KB
2800-287F Static RAM
Non-volatile
(battery)
Configuration
RAM (I/O RAM)
Battery-buffered
memory
128
0000-00FF
Static RAM
Volatile
Internal RAM
Part of 80515 Core
256
Memory size depends on IC. See 2.5.1 Physical Memory for details.
MOVX Addressing
There are two types of instructions differing in whether they provide an 8-bit or 16-bit indirect address to
the external data RAM.
In the first type, MOVX A,@Ri, the contents of R0 or R1 in the current register bank provide the eight
lower-ordered bits of address. The eight high-ordered bits of the address are specified with the PDATA
SFR. This method allows the user paged access (256 pages of 256 bytes each) to all ranges of the
external data RAM.
In the second type of MOVX instruction, MOVX A,@DPTR, the data pointer generates a 16-bit address.
This form is faster and more efficient when accessing very large data arrays (up to 64 KB), since no
additional instructions are needed to set up the eight high ordered bits of the address.
It is possible to mix the two MOVX types. This provides the user with four separate data pointers, two
with direct access and two with paged access, to the entire external memory range.
Dual Data Pointer
The Dual Data Pointer accelerates the block moves of data. The standard DPTR is a 16-bit register that
is used to address external memory or peripherals. In the 80515 core, the standard data pointer is called
DPTR, the second data pointer is called DPTR1. The data pointer select bit, located in the LSB of the DPS
register (DPS[0], SFR 0x92), chooses the active pointer. DPTR is selected when DPS[0] = 0 and DPTR1 is
selected when DPS[0] = 1.
The user switches between pointers by toggling the LSB of the DPS register. The values in the data pointers
are not affected by the LSB of the DPS register. All DPTR related instructions use the currently selected
DPTR for any activity.
The second data pointer may not be supported by certain compilers.