Datasheet

MAX13202E/MAX13204E/MAX13206E/MAX13208E
2-/4-/6-/8-Channel, ±30kV ESD Protectors in µDFN
_______________________________________________________________________________________ 5
During an ESD event, the current pulse rises from zero
to peak value in nanoseconds (Figure 3). For example,
in a ±15kV IEC-61000-4-2 Air-Gap Discharge ESD
event, the pulse current rises to approximately 45A in
1ns (di/dt = 45 x 10
9
). An inductance of only 10nH adds
an additional 450V to the clamp voltage. An inductance
of 10nH represents approximately 0.5in of board trace.
Regardless of the device’s specified diode clamp volt-
age, a poor layout with parasitic inductance significantly
increases the effective clamp voltage at the protected
signal line.
A low-ESR 0.1µF capacitor must be used between V
CC
and GND. This bypass capacitor absorbs the charge
transferred by a +14kV (MAX13204E/MAX13206E/
MAX13208E) and ±12kV (MAX13202E) IEC61000-4-2
Contact Discharge ESD event.
Ideally, the supply rail (V
CC
) would absorb the charge
caused by a positive ESD strike without changing its
regulated value. In reality, all power supplies have an
effective output impedance on their positive rails. If a
power supply’s effective output impedance is 1, then
by using V = I × R, the clamping voltage of V
C
increas-
es by the equation V
C
= I
ESD
x R
OUT
. An ±8kV
IEC 61000-4-2 ESD event generates a current spike of
24A, so the clamping voltage increases by V
C
= 24A ×
1, or V
C
= 24V. Again, a poor layout without proper
bypassing increases the clamping voltage. A ceramic
chip capacitor mounted as close to the MAX13202E/
MAX13204E/MAX13206E/MAX13208E V
CC
pin is the
best choice for this application. A bypass capacitor
should also be placed as close to the protected device
as possible.
±30kV ESD Protection
ESD protection can be tested in various ways. The
MAX13202E/MAX13204E/MAX13206E/MAX13208E are
characterized for protection to the following limits:
•±15kV using the Human Body Model
•±14kV (MAX13204E/MAX13206E/MAX13208E) and
±12kV (MAX13202E) using the Contact Discharge
method specified in IEC 61000-4-2
•±30kV using the IEC 61000-4-2 Air-Gap Discharge
method
ESD Test Conditions
ESD performance depends on a number of conditions.
Contact Maxim for a reliability report that documents
test setup, methodology, and results.
CHARGE-CURRENT-
LIMIT RESISTOR
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
C
s
100pF
R
C
1M
R
D
1.5k
HIGH-
VOLTAGE
DC
SOURCE
DEVICE
UNDER
TEST
Figure 4. Human Body ESD Test Model
I
P
100%
90%
36.8%
t
RL
TIME
t
DL
CURRENT WAVEFORM
PEAK-TO-PEAK RINGING
(NOT DRAWN TO SCALE)
I
r
10%
0
0
AMPERES
Figure 5. Human Body Model Current Waveform
t
R
= 0.7ns to 1ns
30ns
60ns
t
100%
90%
10%
I
PEAK
I
Figure 3. IEC 61000-4-2 ESD Generator Current Waveform