Product specifications
Table Of Contents
- 1.0 ABOUT THIS MANUAL
- 2.0 PRODUCT DESCRIPTION
- 2.1 Transceiver Features
- 2.2 Model Number Codes
- 2.3 Spread Spectrum Radios— How Are They Different?
- 2.4 Typical Applications
- Multiple Address Systems (MAS)
- Point-to-Point System
- Adding a Tail-End Link to an Existing Network
- Extending a TransNET Network with a Repeater
- 2.5 Accessories
- 3.0 INSTALLATION PLANNING
- 3.1 General Requirements
- 3.2 Site Selection
- Terrain and Signal Strength
- Conducting a Site Survey
- 3.3 A Word About Radio Interference
- 3.4 Antenna & Feedline Selection
- Antennas
- Feedlines
- Antenna System Ground
- 3.5 How Much Output Power Can be Used?
- 4.0 INSTALLATION
- 4.1 Transceiver Installation
- 4.2 Configuring Multiple Remote Units
- 4.3 Tail-End Links
- 4.4 Configuring a Network for Extensions
- 5.0 OPERATION
- 5.1 Initial Start-up
- 5.2 Performance Optimization
- Antenna Aiming
- Antenna SWR Check
- Data Buffer Setting—Modbus Protocol
- Hoptime Setting
- TotalFlow™ Protocol at 9600 with Sleep Mode
- Operation at 115200 bps
- Baud Rate Setting
- Radio Interference Checks
- 6.0 RADIO PROGRAMMING
- 6.1 Radio Programming Methods
- Terminal Interface
- PC-Based Configuration Tool
- 6.2 User Commands
- Entering Commands
- 6.3 Detailed Command Descriptions
- ADDR [1–65000]
- AMASK [0000 0000–FFFF FFFF]
- AT [ON, OFF]
- ASENSE [HI/LO]
- BAUD [xxxxx abc]
- BAND [A, B, C]
- BUFF [ON, OFF]
- CODE [NONE, 1…255]
- CSADDR [1–65000, NONE]
- CTS [0–255]
- CTSHOLD [0–60000]
- DEVICE [DCE, CTS KEY]
- DLINK [xxxxx/ON/OFF]
- DKEY
- DTYPE [NODE/ROOT]
- FEC [ON, OFF]
- HOPTIME [7, 28]
- INIT
- HREV
- KEY
- LED [ON, OFF]
- LPM [1, 0]
- LPMHOLD [0–1000]
- MODE [M, R, X]
- MRSSI [NONE, –40...–90]
- OT [ON, OFF]
- OWM [xxxxx]
- OWN [xxxxx]
- PORT [RS232, RS485]
- PWR [20–30]
- REPEAT [0–10]
- RETRY [0–10]
- RSSI
- RTU [ON, OFF, 0-80]
- RX [xxxx]
- RXD [0–255]
- RXTOT [NONE, 0–1440]
- SAF [ON, OFF]
- SETUP
- SER
- SHOW CON
- SHOW PWR
- SHOW SYNC
- SKIP [NONE, 1...8]
- SLEEP [ON, OFF]
- SREV
- STAT
- TEMP
- TX [xxxx]
- UNIT [10000–65000]
- XADDR [0–31]
- XMAP [00000000-FFFFFFFF]
- XPRI [0–31]
- XRSSI [NONE, –40...–120]
- ZONE CLEAR
- ZONE DATA
- 7.0 TROUBLESHOOTING
- 7.1 LED Indicators
- 7.2 Alarm Codes
- Checking for Alarms—STAT command
- Major Alarms versus Minor Alarms
- Alarm Code Definitions
- 7.3 Troubleshooting Chart
- 7.4 Performing Network-Wide Remote Diagnostics
- 7.5 Internal Fuse Replacement
- 8.0 RADIO FIRMWARE UPGRADES
- 8.1 Obtaining New Firmware
- Saving a Web-Site Firmware File Onto Your PC
- 8.2 Installing Firmware Into Your Radio
- 9.0 OPERATING PRINCIPLES AND CONFIGURATION
- 9.1 SAF Operation with Extension Radios
- Simple Extended SAF Network
- Extended SAF Network
- Retransmission and ARQ Operation
- SAF Configuration Example
- 9.2 Synchronizing Network Units
- Synchronization Messages
- 9.3 Using AT Commands
- 9.4 Configuration Parameters for Store-and-Forward Services
- 9.5 Using the Radio’s Sleep Mode (Remote Units Only)
- Sleep Mode Example
- 9.6 Low-Power Mode (LPM)—Master Enabled
- Setup Commands
- Reading RSSI and Other Parameters with LPM Enabled
- Power Consumption Influence by HOPTIME and SAF Settings
- 9.7 Low-Power Mode versus Remote’s Sleep Mode
- 9.8 Mobile Operation Support
- Introduction
- Operational Influences—Hoptime & SAF
- 9.9 MIRRORED BITS™ Protocol Support
- 9.10 Seamless Mode Emulation
- Master Station Configuration
- Antenna System for Co-Located Master Stations
- 10.0 TECHNICAL REFERENCE
- Pin Descriptions—RS/EIA-232 Mode
- Pin Descriptions—RS/EIA-422/485 Mode
- Using the I/O Points with InSite™ NMS Software
- Application Example—Digital Input and Output at a Remote

MDS 05-2708A01, Rev. E MDS TransNET Ref. Manual 53
Extended SAF Network
Below is an example of a multilevel network utilizing two repeaters—X
J,K
and X
K,L
. The example demonstrates the extensibility of the network. In this
case, messages directed to Remotes in the sub-network L will be relayed
through Extension radios X
J,K
and X
K,L
. Like the previous example, the
Extension radios will split their operating time equally between their Master
and Remote “personalities.” This multi-layered network can be extended
indefinitely without degradation in throughput, beyond that initially incurred
by placing the network in the SAF mode.
Invisible place holder
Figure 18. Extended SAF Network
Networks: J, K, L
Retransmission and ARQ Operation
Functionally, the sub-network side of an Extension behaves like a corre-
sponding connection between a Master and a Remote.
When an Extension is using its “Master personality” it sends acknowledg-
ments and performs unconditional retransmissions based on its
REPEAT
count.
When an Extension is using its “Remote personality,” acknowledgments are
processed and retransmissions occur as needed, up to the number of times
specified by the
RETRY count value.
If data arrives from a new source prior to completion of retransmissions, it is
considered to be a violation of the polling model protocol. The new data takes
precedence over the old data, and the old data is lost. In such a situation, new
data is likely to be corrupted as it will have some old data mixed in with it.
SAF Configuration Example
Here is an outline for the configuration of a simple store-and-forward link.
X
K,L
R
L
R
L
M
J
R
J
R
J
X
J,KI
R
J
R
K
R
K
R
L
Sub-Network “J”
Sub-Network “K”
Sub-Network “L”










