Product specifications
Table Of Contents
- 1.0 ABOUT THIS MANUAL
- 2.0 PRODUCT DESCRIPTION
- 2.1 Transceiver Features
- 2.2 Model Number Codes
- 2.3 Spread Spectrum Radios— How Are They Different?
- 2.4 Typical Applications
- Multiple Address Systems (MAS)
- Point-to-Point System
- Adding a Tail-End Link to an Existing Network
- Extending a TransNET Network with a Repeater
- 2.5 Accessories
- 3.0 INSTALLATION PLANNING
- 3.1 General Requirements
- 3.2 Site Selection
- Terrain and Signal Strength
- Conducting a Site Survey
- 3.3 A Word About Radio Interference
- 3.4 Antenna & Feedline Selection
- Antennas
- Feedlines
- Antenna System Ground
- 3.5 How Much Output Power Can be Used?
- 4.0 INSTALLATION
- 4.1 Transceiver Installation
- 4.2 Configuring Multiple Remote Units
- 4.3 Tail-End Links
- 4.4 Configuring a Network for Extensions
- 5.0 OPERATION
- 5.1 Initial Start-up
- 5.2 Performance Optimization
- Antenna Aiming
- Antenna SWR Check
- Data Buffer Setting—Modbus Protocol
- Hoptime Setting
- TotalFlow™ Protocol at 9600 with Sleep Mode
- Operation at 115200 bps
- Baud Rate Setting
- Radio Interference Checks
- 6.0 RADIO PROGRAMMING
- 6.1 Radio Programming Methods
- Terminal Interface
- PC-Based Configuration Tool
- 6.2 User Commands
- Entering Commands
- 6.3 Detailed Command Descriptions
- ADDR [1–65000]
- AMASK [0000 0000–FFFF FFFF]
- AT [ON, OFF]
- ASENSE [HI/LO]
- BAUD [xxxxx abc]
- BAND [A, B, C]
- BUFF [ON, OFF]
- CODE [NONE, 1…255]
- CSADDR [1–65000, NONE]
- CTS [0–255]
- CTSHOLD [0–60000]
- DEVICE [DCE, CTS KEY]
- DLINK [xxxxx/ON/OFF]
- DKEY
- DTYPE [NODE/ROOT]
- FEC [ON, OFF]
- HOPTIME [7, 28]
- INIT
- HREV
- KEY
- LED [ON, OFF]
- LPM [1, 0]
- LPMHOLD [0–1000]
- MODE [M, R, X]
- MRSSI [NONE, –40...–90]
- OT [ON, OFF]
- OWM [xxxxx]
- OWN [xxxxx]
- PORT [RS232, RS485]
- PWR [20–30]
- REPEAT [0–10]
- RETRY [0–10]
- RSSI
- RTU [ON, OFF, 0-80]
- RX [xxxx]
- RXD [0–255]
- RXTOT [NONE, 0–1440]
- SAF [ON, OFF]
- SETUP
- SER
- SHOW CON
- SHOW PWR
- SHOW SYNC
- SKIP [NONE, 1...8]
- SLEEP [ON, OFF]
- SREV
- STAT
- TEMP
- TX [xxxx]
- UNIT [10000–65000]
- XADDR [0–31]
- XMAP [00000000-FFFFFFFF]
- XPRI [0–31]
- XRSSI [NONE, –40...–120]
- ZONE CLEAR
- ZONE DATA
- 7.0 TROUBLESHOOTING
- 7.1 LED Indicators
- 7.2 Alarm Codes
- Checking for Alarms—STAT command
- Major Alarms versus Minor Alarms
- Alarm Code Definitions
- 7.3 Troubleshooting Chart
- 7.4 Performing Network-Wide Remote Diagnostics
- 7.5 Internal Fuse Replacement
- 8.0 RADIO FIRMWARE UPGRADES
- 8.1 Obtaining New Firmware
- Saving a Web-Site Firmware File Onto Your PC
- 8.2 Installing Firmware Into Your Radio
- 9.0 OPERATING PRINCIPLES AND CONFIGURATION
- 9.1 SAF Operation with Extension Radios
- Simple Extended SAF Network
- Extended SAF Network
- Retransmission and ARQ Operation
- SAF Configuration Example
- 9.2 Synchronizing Network Units
- Synchronization Messages
- 9.3 Using AT Commands
- 9.4 Configuration Parameters for Store-and-Forward Services
- 9.5 Using the Radio’s Sleep Mode (Remote Units Only)
- Sleep Mode Example
- 9.6 Low-Power Mode (LPM)—Master Enabled
- Setup Commands
- Reading RSSI and Other Parameters with LPM Enabled
- Power Consumption Influence by HOPTIME and SAF Settings
- 9.7 Low-Power Mode versus Remote’s Sleep Mode
- 9.8 Mobile Operation Support
- Introduction
- Operational Influences—Hoptime & SAF
- 9.9 MIRRORED BITS™ Protocol Support
- 9.10 Seamless Mode Emulation
- Master Station Configuration
- Antenna System for Co-Located Master Stations
- 10.0 TECHNICAL REFERENCE
- Pin Descriptions—RS/EIA-232 Mode
- Pin Descriptions—RS/EIA-422/485 Mode
- Using the I/O Points with InSite™ NMS Software
- Application Example—Digital Input and Output at a Remote

60 MDS TransNET Ref. Manual MDS 05-2708A01, Rev. E
It is important to note that power consumption will increase somewhat as
communication from the Master station degrades. This is because the radio
will spend a greater period of time “awake” looking for synchronization
messages from the Master radio.
In order for the radio to be controlled by Pin 4, the unit’s Sleep Mode must be
enabled through the
SLEEP [ON, OFF] command. See “SLEEP [ON, OFF]”
on Page 42 for more information.
NOTE: If INTRUSIVE polling is used in the MDS’ InSite NMS software, it is necessary
to select SLEEP MODE INHIBIT ON from the Polling Options menu, on the
Network Wide Diagnostic Polling screen.
Sleep Mode Example
The following example describes Sleep Mode implementation in a typical
system. Using this information, you should be able to configure a system that
meets your own particular needs.
Suppose you need communications to each Remote site only once per hour.
Program the RTU to raise an EIA/RS-232 line once each hour (DTR for
example) and wait for a poll and response before lowering it again. Connect
this line to Pin 4 of the radio’s
DATA connector. This will allow each RTU to
be polled once per hour, with a dramatic reduction in power consumption.
9.6 Low-Power Mode (LPM)—Master Enabled
The Low-Power Mode (LPM) puts Remote radios into a configuration similar
to Sleep, but with some important distinctions. The most important difference
is the radio will automatically go to sleep in this mode, regardless of the
condition of Pin 4 of the
DATA interface connector.
This feature trades increased latency to gain power savings. The low-power
mode (LPM) automatically saves power at a Remote by instructing the
Remote to shutdown for long periods of time between SYNC messages.
Master transmissions are automatically blocked while the Remotes are
asleep. Note, both Masters and Remotes are adaptive and will suppress a
normal sleep interval until after the end of a current data transmission or
reception.
Setup Commands
These are the command options and their applications:
•
LPM 1 at the Master enables low-power mode network-wide; all
Remotes pick it up and start saving power by automatically sleeping.
LPM 1 can work in conjunction with the AT dialing feature. The dialed
unit will be forced awake; all others will sleep.
•
LPM 0 at the Master is used to disable low-power mode (LPM)
(Default setting following an
INIT or firmware upgrade.)
For
LPMHOLD 0 with REPEAT 0 setting, a Remote with no data to send will
consume about 1/4 of its normal power consumption. Note that the SLEEP
command must be enabled for the LPM to function.










