User's Manual

APPLICANT: MOTOROLA EQUIPMENT TYPE: ABZ89FC3795
User / Operational Manual
Functional Description / Operation of Modules (Draft)
EXHIBIT D1-6
and slave modes, programmable clock rate, phase, polarity, programmable word size, programmable bit ordering,
and loopback.
Before an SPI data transfer can take place, the SPI master (initiator) must assert the select line of the slave
(target) device. The OMAP1710 is always the SPI master for MTR3000 BR. To simplify overall SPI architecture
for MTR3000 BR, address decoding is used instead of individual device chip signals. This approach not only
minimizes the number of GPIOs needed for device chip select, it also provides flexibility for future expansion. This
device address decoding is handled by a Field Programmable Gate Array (FPGA) on the SCM and a Customer
Programmable Logic Device (CPLD) on each FRU’s, except the power supply.
The FPGA SPI module performs address and chip select decoding, level shifting, and signal mixing for both the TX
OMAP SPI bus and the RX OMAP SPI bus. Simultaneous RX and TX SPI accesses are allowed. The TX and RX
SPI are 100% independent.
Station Reference RX - A TCXO provides the frequency reference for the BR. The TCXO is 16.8 MHz. The FPGA
is used to create other clocks locked to the TCXO which are needed by various devices on the Control Board.
The clocks are summarized in the following table:
Station Control Module (SCM) FPGA output Frequencies
Frequency Destination
12 MHz TX OMAP, RX OMAP
24.576 MHz MAKO
32.768 kHz TX OMAP, RX OMAP, MAKO
RX OMAP
The RX DSP is a TI OMAP Multimedia Processor. The OMAP1710 consists of a microprocessor unit (MPU)
subsystem and a digital signal processor (DSP) subsystem. OMAP1710 has dedicated external memory interface
that allows point-to-point connection to standard mobile SDRAM/DDR and mobile flash devices. It is a low-power
device (1.4V Core and 1.8V I/O supply). The RX OMAP handles receiving tasks of the SCM only.
MAKO - MAKO IC is a customized IC and the SCM uses this device to leverage some unique functionality that it
provides.
Most of the MAKO functionalities are not used on the SCM. Only the MAKO codec, USB driver, ADC, DAC, and
some voltage regulators are used for MTR3000. The 9 channel general purpose ADC is used for various controller
metering.
Field Programmable Gate Array (FPGA) - The SCM FPGA includes the following major functions:
• External reference watchdog
• SPI Address decoding and buffering
• TCXO Phase detection and compensation
• Clock generation
• Reset controller
• External Interface (Wireline SSI, LED, etc.)
FPGA field upgrade capability is also supported on MTR3000.
Audio - There are four transmit inputs: TX Audio, TX Audio-Pre & TX Data on the backplane 25-Pin connector, and
the microphone input on a front panel RJ45 connector.
TX Audio is a flat (not pre-emphasized) input which is used if the incoming transmit audio signal is already pre-
emphasized or if pre-emphasis is not needed. The TX Audio-Pre input provides a hardware pre-emphasis filter.
The TX Data input is used for low speed data, Private-Line (PL) and Digital Private Line (DPL) signals. The TX
Audio, TX Audio-Pre and microphone inputs pass through a hardware modulation limiter and splatter filter before
being summed with TX Data, with the TX Data bypassing the limiter and splatter filter. This summed signal is
applied to the MAKO codec “mic” input. The audio signal without TX Data is provided on the MAKO codec
“aux_mic” input.
There are three receive outputs: RX Audio & Aux RX Audio on the backplane 25-Pin connector and speaker audio
on a front panel RJ11. The speaker audio is the sum of the MAKO codec output (demodulated audio) and transmit
audio. A high pass filter removes any data, PL or DPL from the speaker audio. A programmable attenuator is
used to adjust the speaker audio level before being output on the RJ11 connector. Aux RX Audio is the output of