Troubleshooting Manual

Table Of Contents
VX150 TO VX2 TROUBLESHOOTING MANUAL RESPONDING TO ALARMS
VERSION 0.1 2020-12-01 PAGE 3.1.3
Electrostatic Protection
The transmitter's assemblies contain semiconductor devices that are susceptible to damage from
electrostatic discharge. The following precautions must be observed when handling an assembly which
contains these devices.
Electrical Discharging of Personnel
Personnel should be electrically discharged by a suitable grounding system (e.g., anti-static mats,
grounding straps) when removing an assembly from the transmitter, and while handling the assembly
for maintenance procedures.
Handling/Storage
An assembly should be placed in an anti-static bag when it is not installed in a host transmitter, or
when it is not undergoing maintenance. Electronic components should be stored in anti-static
materials.
Tools/Test Equipment
Testing and maintenance equipment – including soldering and unsoldering tools – should be suitable
(i.e., grounded tip) for contact with static sensitive semiconductor devices.
Stress Current Protection
Every precaution should be taken to ensure the static sensitive semiconductor devices are protected
from unnecessary stress current. This is achieved by ensuring that current is not flowing when an
electrical connection is broken, and that voltages are not present on external control/monitoring circuits
when they are connected.
CAUTION! Electrostatic energy is produced when two insulating materials are
rubbed together. A person wearing rubber-soled shoes, walking across a nylon
carpet or a waxed floor, can generate an extremely large electrostatic charge. This
effect is magnified during periods of low humidity. Semiconductor devices such as
integrated circuits, field-effect transistors, thyristors and Schottky diodes may be
damaged by this high voltage unless adequate precautions are taken.