User's Manual
Table Of Contents
- 8-Port Multi-Gigabit Smart Managed Pro Switch with Two 10G Ports
- Contents
- 1 Get Started
- 2 Configure System Information
- View and Configure the Switch Management Settings
- View or Define System Information and View Software Versions
- View the System CPU Status
- View USB Device Information
- Configure the IPv4 Address for the Network Interface and Management VLAN
- Configure the IPv6 Address for the Network Interface
- View the IPv6 Network Neighbor
- Configure the Time Settings
- Configure DNS Settings
- Configure Green Ethernet Settings
- Use the Device View
- Configure Power over Ethernet
- Configure SNMP
- Configure LLDP
- Configure DHCP Snooping
- Set Up PoE Timer Schedules
- View and Configure the Switch Management Settings
- 3 Configure Switching
- Configure Port Settings and Flow Control
- Configure Link Aggregation Groups
- Configure VLANs
- Configure VLAN Settings
- Configure VLAN Membership
- View VLAN Status
- Configure Port PVID Settings
- Configure MAC-Based VLAN Groups
- Manually Add Members to or Remove Them From a MAC-Based VLAN Group
- Configure Protocol-Based VLAN Groups
- Manually Add Members to or Remove Them From a Protocol-Based VLAN Group
- Configure GARP Switch Settings
- Configure GARP Ports
- Configure a Voice VLAN
- Configure Auto-VoIP
- Configure Spanning Tree Protocol
- Configure Multicast
- View the MFDB Table
- View the MFDB Statistics
- Configure Auto-Video
- IGMP Snooping Overview
- Configure the Global IGMP Snooping Settings
- View the IGMP Snooping Table
- Configure IGMP Snooping for VLANs
- Modify IGMP Snooping Settings for a VLAN
- Disable IGMP Snooping on a VLAN and Remove It From the Table
- IGMP Snooping Querier Overview
- Configure IGMP Snooping Querier
- Configure IGMP Snooping Querier for VLANs
- Display the IGMP Snooping Querier for VLAN Status
- MLD Snooping Overview
- Configure the Global MLD Snooping Settings
- Configure MLD Snooping for a VLAN
- View, Search, and Manage the MAC Address Table
- 4 Configure Routing
- IP Routing Overview
- Configure IP Settings
- Configure VLAN Routing
- Manage IPv4 Routes
- Configure Address Resolution Protocol
- Configure IPv6
- Configure IPv6 Global Settings
- Add a Static IPv6 Route
- Change the Preference for a Static IPv6 Route
- Remove a Static IPv6 Route
- View the IPv6 Route Table
- Configure IPv6 VLAN Interface Settings
- Add an IPv6 Global Address to an IPv6 VLAN
- Change the Settings for an IPv6 Global Address on an IPv6 VLAN
- Remove an IPv6 Global Address From an IPv6 VLAN
- Add an IPv6 Prefix for Advertisement on an IPv6 VLAN
- Change the Settings for an IPv6 Prefix for Advertisement on an IPv6 VLAN
- Remove an IPv6 Prefix From an IPv6 VLAN
- View IPv6 Statistics for an Interface
- View or Clear the IPv6 Neighbor Table
- 5 Configure Quality of Service
- 6 Manage Device Security
- Management Security Settings
- Configure Management Access
- Configure Port Authentication
- Set Up Traffic Control
- Configure Access Control Lists
- Use the ACL Wizard to Create a Simple ACL
- Configure a Basic MAC ACL
- Configure MAC ACL Rules
- Configure MAC Bindings
- View or Delete MAC ACL Bindings in the MAC Binding Table
- Configure an IP ACL
- Configure Rules for a Basic IP ACL
- Configure Rules for an Extended IP ACL
- Configure an IPv6 ACL
- Configure IPv6 Rules
- Configure IP ACL Interface Bindings
- View or Delete IP ACL Bindings in the IP ACL Binding Table
- 7 Monitor the System
- 8 Maintain the Switch and Perform Troubleshooting
- A Configuration Examples
- B Hardware Specifications and Default Settings
Smart Managed Pro Switches MS510TX and MS510TXPP
Configure Routing User Manual187
The following table describes the nonconfigurable IPv6 statistics that are displayed.
Table 51. IPv6 Statistics information
Field Description
Total Datagrams Received The total number of input datagrams received by the interface, including
those received in error.
Received Datagrams Locally
Delivered
The total number of datagrams successfully delivered to IPv6
user-protocols (including ICMP). This counter is incremented at the
interface to which these datagrams were addressed, which might not be
the input interface for some of the datagrams.
Received Datagrams Discarded
Due To Header Errors
The number of input datagrams discarded due to errors in their IPv6
headers, including version number mismatch, other format errors, hop
count exceeded, errors discovered in processing their IPv6 options, and
so on.
Received Datagrams Discarded
Due To MTU
The number of input datagrams that could not be forwarded because their
size exceeded the link MTU of outgoing interface.
Received Datagrams Discarded
Due To No Route
The number of input datagrams discarded because no route could be
found to transmit them to their destination.
Received Datagrams With Unknown
Protocol
The number of locally addressed datagrams received successfully but
discarded because of an unknown or unsupported protocol. This counter
is incremented at the interface to which these datagrams were addressed,
which might not be the input interface for some of the datagrams.
Received Datagrams Discarded
Due To Invalid Address
The number of input datagrams discarded because the IPv6 address in
their IPv6 header's destination field was not a valid address to be received
at this entity. This count includes invalid addresses (for example, ::0) and
unsupported addresses (such as addresses with unallocated prefixes).
For entities that are not IPv6 routers and therefore do not forward
datagrams, this counter includes datagrams discarded because the
destination address was not a local address.
Received Datagrams Discarded
Due To Truncated Data
The number of input datagrams discarded because datagram frame didn't
carry enough data.
Received Datagrams Discarded
Other
The number of input IPv6 datagrams for which no problems were
encountered to prevent their continued processing, but that were
discarded for reasons such as lack of buffer space. This counter does not
include any datagrams discarded while awaiting reassembly.
Received Datagrams Reassembly
Required
The number of IPv6 fragments received that needed to be reassembled at
this interface. This counter is incremented at the interface to which these
fragments were addressed, which might not be the input interface for
some of the fragments.
Datagrams Successfully
Reassembled
The number of IPv6 datagrams successfully reassembled. This counter is
incremented at the interface to which these datagrams were addressed,
which might not be necessarily the input interface for some of the
fragments.










