Datasheet
Table Of Contents
- 1. General description
- 2. Features and benefits
- 3. Applications
- 4. Ordering information
- 5. Block diagram
- 6. Pinning information
- 7. Functional description
- 7.1 Architectural overview
- 7.2 On-chip flash programming memory
- 7.3 On-chip SRAM
- 7.4 Memory map
- 7.5 Interrupt controller
- 7.6 Pin connect block
- 7.7 General purpose DMA controller
- 7.8 Fast general purpose parallel I/O
- 7.9 Ethernet (LPC2362 only)
- 7.10 USB interface
- 7.11 CAN controller and acceptance filters
- 7.12 10-bit ADC
- 7.13 10-bit DAC
- 7.14 UARTs
- 7.15 SPI serial I/O controller
- 7.16 SSP serial I/O controller
- 7.17 I2C-bus serial I/O controllers
- 7.18 I2S-bus serial I/O controllers
- 7.19 General purpose 32-bit timers/external event counters
- 7.20 Pulse width modulator
- 7.21 Watchdog timer
- 7.22 RTC and battery RAM
- 7.23 Clocking and power control
- 7.24 System control
- 7.25 Emulation and debugging
- 8. Limiting values
- 9. Thermal characteristics
- 10. Static characteristics
- 11. Dynamic characteristics
- 12. ADC electrical characteristics
- 13. DAC electrical characteristics
- 14. Application information
- 15. Package outline
- 16. Abbreviations
- 17. Revision history
- 18. Legal information
- 19. Contact information
- 20. Contents
LPC2361_62 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 5.1 — 15 October 2013 18 of 65
NXP Semiconductors
LPC2361/62
Single-chip 16-bit/32-bit MCU
• GPIO registers are relocated to the ARM local bus so that the fastest possible I/O
timing can be achieved.
• Mask registers allow treating sets of port bits as a group, leaving other bits
unchanged.
• All GPIO registers are byte and half-word addressable.
• Entire port value can be written in one instruction.
Additionally, any pin on PORT0 and PORT2 (total of 42 pins) providing a digital function
can be programmed to generate an interrupt on a rising edge, a falling edge, or both. The
edge detection is asynchronous, so it may operate when clocks are not present such as
during Power-down mode. Each enabled interrupt can be used to wake up the chip from
Power-down mode.
7.8.1 Features
• Bit level set and clear registers allow a single instruction to set or clear any number of
bits in one port.
• Direction control of individual bits.
• All I/O default to inputs after reset.
• Backward compatibility with other earlier devices is maintained with legacy PORT0
and PORT1 registers appearing at the original addresses on the APB.
7.9 Ethernet (LPC2362 only)
The Ethernet block contains a full featured 10 Mbit/s or 100 Mbit/s Ethernet MAC
designed to provide optimized performance through the use of DMA hardware
acceleration. Features include a generous suite of control registers, half or full duplex
operation, flow control, control frames, hardware acceleration for transmit retry, receive
packet filtering and wake-up on LAN activity. Automatic frame transmission and reception
with scatter-gather DMA off-loads many operations from the CPU.
The Ethernet block and the CPU share a dedicated AHB subsystem that is used to access
the Ethernet SRAM for Ethernet data, control, and status information. All other AHB traffic
in the LPC2362 takes place on a different AHB subsystem, effectively separating Ethernet
activity from the rest of the system. The Ethernet DMA can also access the USB SRAM if
it is not being used by the USB block.
The Ethernet block interfaces between an off-chip Ethernet PHY using the Reduced MII
(RMII) protocol and the on-chip Media Independent Interface Management (MIIM) serial
bus.
7.9.1 Features
• Ethernet standards support:
– Supports 10 Mbit/s or 100 Mbit/s PHY devices including 10 Base-T, 100 Base-TX,
100 Base-FX, and 100 Base-T4.
– Fully compliant with IEEE standard 802.3.
– Fully compliant with 802.3x full duplex flow control and half duplex back pressure.
– Flexible transmit and receive frame options.
– Virtual Local Area Network (VLAN) frame support.
