Datasheet

LPC2377_78 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 6.1 — 16 October 2013 35 of 69
NXP Semiconductors
LPC2377/78
Single-chip 16-bit/32-bit microcontrollers
The VBAT pin supplies power only to the RTC and the battery RAM. These two functions
require a minimum of power to operate, which can be supplied by an external battery.
When the CPU and the rest of chip functions are stopped and power removed, the RTC
can supply an alarm output that may be used by external hardware to restore chip power
and resume operation.
7.26 System control
7.26.1 Reset
Reset has four sources on the LPC2377/78: the RESET pin, the watchdog reset,
power-on reset, and the BrownOut Detection (BOD) circuit. The RESET
pin is a Schmitt
trigger input pin. Assertion of chip Reset by any source, once the operating voltage attains
a usable level, starts the wake-up timer (see description in Section 7.25.3 “
Wake-up
timer), causing reset to remain asserted until the external Reset is de-asserted, the
oscillator is running, a fixed number of clocks have passed, and the flash controller has
completed its initialization.
When the internal Reset is removed, the processor begins executing at address 0, which
is initially the Reset vector mapped from the Boot Block. At that point, all of the processor
and peripheral registers have been initialized to predetermined values.
7.26.2 Brownout detection
The LPC2377/78 include 2-stage monitoring of the voltage on the V
DD(DCDC)(3V3)
pins. If
this voltage falls below 2.95 V, the BOD asserts an interrupt signal to the Vectored
Interrupt Controller. This signal can be enabled for interrupt in the Interrupt Enable
Register in the VIC in order to cause a CPU interrupt; if not, software can monitor the
signal by reading a dedicated status register.
The second stage of low-voltage detection asserts Reset to inactivate the LPC2377/78
when the voltage on the V
DD(DCDC)(3V3)
pins falls below 2.65 V. This Reset prevents
alteration of the flash as operation of the various elements of the chip would otherwise
become unreliable due to low voltage. The BOD circuit maintains this reset down below
1 V, at which point the power-on reset circuitry maintains the overall Reset.
Both the 2.95 V and 2.65 V thresholds include some hysteresis. In normal operation, this
hysteresis allows the 2.95 V detection to reliably interrupt, or a regularly executed event
loop to sense the condition.
7.26.3 Code security (Code Read Protection - CRP)
This feature of the LPC2377/78 allows a user to enable different levels of security in the
system so that access to the on-chip flash and use of the JTAG and ISP can be restricted.
When needed, CRP is invoked by programming a specific pattern into a dedicated flash
location. IAP commands are not affected by the CRP.
There are three levels of the Code Read Protection.
CRP1 disables access to chip via the JTAG and allows partial flash update (excluding
flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is
required and flash field updates are needed but all sectors can not be erased.
CRP2 disables access to chip via the JTAG and only allows full flash erase and update
using a reduced set of the ISP commands.