Datasheet

LPC2387 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved.
Product data sheet Rev. 5.1 — 16 October 2013 19 of 66
NXP Semiconductors
LPC2387
Single-chip 16-bit/32-bit MCU
Additionally, any pin on port 0 and port 2 (total of 42 pins) providing a digital function can
be programmed to generate an interrupt on a rising edge, a falling edge, or both. The
edge detection is asynchronous, so it may operate when clocks are not present such as
during Power-down mode. Each enabled interrupt can be used to wake up the chip from
Power-down mode.
7.8.1 Features
Bit level set and clear registers allow a single instruction to set or clear any number of
bits in one port.
Direction control of individual bits.
All I/O default to inputs after reset.
Backward compatibility with other earlier devices is maintained with legacy port 0 and
port 1 registers appearing at the original addresses on the APB.
7.9 Ethernet
The Ethernet block contains a full featured 10 Mbit/s or 100 Mbit/s Ethernet MAC
designed to provide optimized performance through the use of DMA hardware
acceleration. Features include a generous suite of control registers, half or full duplex
operation, flow control, control frames, hardware acceleration for transmit retry, receive
packet filtering and wake-up on LAN activity. Automatic frame transmission and reception
with scatter-gather DMA off-loads many operations from the CPU.
The Ethernet block and the CPU share a dedicated AHB subsystem that is used to access
the Ethernet SRAM for Ethernet data, control, and status information. All other AHB traffic
in the LPC2387 takes place on a different AHB subsystem, effectively separating Ethernet
activity from the rest of the system. The Ethernet DMA can also access the USB SRAM if
it is not being used by the USB block.
The Ethernet block interfaces between an off-chip Ethernet PHY using the Reduced MII
(RMII) protocol and the on-chip Media Independent Interface Management (MIIM) serial
bus.
7.9.1 Features
Ethernet standards support:
Supports 10 Mbit/s or 100 Mbit/s PHY devices including 10 Base-T, 100 Base-TX,
100 Base-FX, and 100 Base-T4.
Fully compliant with IEEE standard 802.3.
Fully compliant with 802.3x full duplex flow control and half duplex back pressure.
Flexible transmit and receive frame options.
Virtual Local Area Network (VLAN) frame support.
Memory management:
Independent transmit and receive buffers memory mapped to shared SRAM.
DMA managers with scatter/gather DMA and arrays of frame descriptors.
Memory traffic optimized by buffering and pre-fetching.
Enhanced Ethernet features: