Datasheet

LPC435X_3X_2X_1X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 4 — 19 August 2014 85 of 158
NXP Semiconductors
LPC435x/3x/2x/1x
32-bit ARM Cortex-M4/M0 microcontroller
7.23.7 System PLL1
The PLL1 accepts an input clock frequency from an external oscillator in the range of
1 MHz to 25 MHz. The input frequency is multiplied up to a high frequency with a Current
Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32. The CCO
operates in the range of 156 MHz to 320 MHz. This range is possible through an
additional divider in the loop to keep the CCO within its frequency range while the PLL is
providing the desired output frequency. The output divider can be set to divide by 2, 4, 8,
or 16 to produce the output clock. Since the minimum output divider value is 2, it is
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed
following a chip reset. After reset, software can enable the PLL. The program must
configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL as a
clock source. The PLL settling time is 100 s.
7.23.8 Reset Generation Unit (RGU)
The RGU allows generation of independent reset signals for individual blocks and
peripherals on the LPC435x/3x/2x/1x.
7.23.9 Power Management Controller (PMC)
The PMC controls the power to the cores, peripherals, and memories.
The LPC435x/3x/2x/1x support the following power modes in order from highest to lowest
power consumption:
1. Active mode
2. Sleep mode
3. Power-down modes:
a. Deep-sleep mode
b. Power-down mode
c. Deep power-down mode
Active mode and sleep mode apply to the state of the core. In a dual-core system, either
core can be in active or sleep mode independently of the other core.
If the core is in Active mode, it is fully operational and can access peripherals and
memories as configured by software. If the core is in Sleep mode, it receives no clocks,
but peripherals and memories remain running.
Either core can enter sleep mode from active mode independently of the other core and
while the other core remains in active mode or is in sleep mode.
Power-down modes apply to the entire system. In the Power-down modes, both cores and
all peripherals except for peripherals in the always-on power domain are shut down.
Memories can remain powered for retaining memory contents as defined by the individual
power-down mode.
Either core in active mode can put the part into one of the three power down modes if the
core is enabled to do so. If both cores are enabled for putting the system into power-down,
then the system enters power-down only once both cores have received a WFI or WFE
instruction.