Datasheet

Table Of Contents
MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5
Freescale Semiconductor 59
Chapter 3
Analog-to-Digital Converter (ADC)
3.1 Introduction
This section describes the 10-bit analog-to-digital converter (ADC).
3.2 Features
Features of the ADC module include:
24 channels with multiplexed input
Linear successive approximation with monotonicity
10-bit resolution
Single or continuous conversion
Conversion complete flag or conversion complete interrupt
Selectable ADC clock
Left or right justified result
Left justified sign data mode
3.3 Functional Description
The ADC provides 24 pins for sampling external sources at pins PTG7/AD23–PTG0/AD16,
PTA7/KBD7/AD15–PTA0/KBD0/AD8, and PTB7/AD7–PTB0/AD0. An analog multiplexer allows the
single ADC converter to select one of 24 ADC channels as ADC voltage in (V
ADIN
). V
ADIN
is converted by
the successive approximation register-based analog-to-digital converter. When the conversion is
completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. See
Figure 3-2.
3.3.1 ADC Port I/O Pins
PTG7/AD23–PTG0/AD16, PTA7/KBD7/AD15–PTA0/KBD0/AD8, and PTB7/AD7–PTB0/AD0 are
general-purpose I/O (input/output) pins that share with the ADC channels. The channel select bits define
which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by
forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O
logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR)
will not have any affect on the port pin that is selected by the ADC. A read of a port pin in use by the ADC
will return a 0.