Datasheet

Chapter 8 Internal Clock Generator (S08ICGV4)
MC9S08AW60 Data Sheet, Rev 2
Freescale Semiconductor 155
8.5.5 Example #4: Internal Clock Generator Trim
The internally generated clock source is guaranteed to have a period ± 25% of the nominal value. In some
cases, this may be sufficient accuracy. For other applications that require a tight frequency tolerance, a
trimming procedure is provided that will allow a very accurate source. This section outlines one example
of trimming the internal oscillator. Many other possible trimming procedures are valid and can be used.
Figure 8-17. Trim Procedure
In this particular case, the MCU has been attached to a PCB and the entire assembly is undergoing final
test with automated test equipment. A separate signal or message is provided to the MCU operating under
user provided software control. The MCU initiates a trim procedure as outlined in Figure 8-17 while the
tester supplies a precision reference signal.
If the intended bus frequency is near the maximum allowed for the device, it is recommended to trim using
a reduction divisor (R) twice the final value. After the trim procedure is complete, the reduction divisor
can be restored. This will prevent accidental overshoot of the maximum clock frequency.
Initial conditions:
1) Clock supplied from ATE has 500 μsec duty period
2) ICG configured for internal reference with 4 MHz bus
START TRIM PROCEDURE
CONTINUE
CASE STATEMENT
COUNT > EXPECTED = 500
.
MEASURE
INCOMING CLOCK WIDTH
ICGTRM = $80, n = 1
COUNT < EXPECTED = 500
COUNT = EXPECTED = 500
STORE ICGTRM VALUE
IN NON-VOLATILE
MEMORY
ICGTRM =
ICGTRM =
ICGTRM - 128 / (2**n)
ICGTRM + 128 / (2**n)
n = n + 1
(COUNT = # OF BUS CLOCKS / 4)
(DECREASING ICGTRM
INCREASES THE FREQUENCY)
(INCREASING ICGTRM
DECREASES THE FREQUENCY)
NO
YES
IS n > 8?
(RUNNING TOO SLOW)
(RUNNING TOO FAST)