Datasheet
Table Of Contents
- MC9S08SH8DS_Readme
- MC9S08SH8_DSAD_Rev.1
- MC9S08SH8
- Chapter 1 Device Overview
- Chapter 2 Pins and Connections
- Chapter 3 Modes of Operation
- Chapter 4 Memory
- Chapter 5 Resets, Interrupts, and General System Control
- 5.1 Introduction
- 5.2 Features
- 5.3 MCU Reset
- 5.4 Computer Operating Properly (COP) Watchdog
- 5.5 Interrupts
- 5.6 Low-Voltage Detect (LVD) System
- 5.7 Reset, Interrupt, and System Control Registers and Control Bits
- 5.7.1 Interrupt Pin Request Status and Control Register (IRQSC)
- 5.7.2 System Reset Status Register (SRS)
- 5.7.3 System Background Debug Force Reset Register (SBDFR)
- 5.7.4 System Options Register 1 (SOPT1)
- 5.7.5 System Options Register 2 (SOPT2)
- 5.7.6 System Device Identification Register (SDIDH, SDIDL)
- 5.7.7 System Power Management Status and Control 1 Register (SPMSC1)
- 5.7.8 System Power Management Status and Control 2 Register (SPMSC2)
- Chapter 6 Parallel Input/Output Control
- 6.1 Port Data and Data Direction
- 6.2 Pull-up, Slew Rate, and Drive Strength
- 6.3 Ganged Output
- 6.4 Pin Interrupts
- 6.5 Pin Behavior in Stop Modes
- 6.6 Parallel I/O and Pin Control Registers
- 6.6.1 Port A Registers
- 6.6.1.1 Port A Data Register (PTAD)
- 6.6.1.2 Port A Data Direction Register (PTADD)
- 6.6.1.3 Port A Pull Enable Register (PTAPE)
- 6.6.1.4 Port A Slew Rate Enable Register (PTASE)
- 6.6.1.5 Port A Drive Strength Selection Register (PTADS)
- 6.6.1.6 Port A Interrupt Status and Control Register (PTASC)
- 6.6.1.7 Port A Interrupt Pin Select Register (PTAPS)
- 6.6.1.8 Port A Interrupt Edge Select Register (PTAES)
- 6.6.2 Port B Registers
- 6.6.2.1 Port B Data Register (PTBD)
- 6.6.2.2 Port B Data Direction Register (PTBDD)
- 6.6.2.3 Port B Pull Enable Register (PTBPE)
- 6.6.2.4 Port B Slew Rate Enable Register (PTBSE)
- 6.6.2.5 Port B Drive Strength Selection Register (PTBDS)
- 6.6.2.6 Port B Interrupt Status and Control Register (PTBSC)
- 6.6.2.7 Port B Interrupt Pin Select Register (PTBPS)
- 6.6.2.8 Port B Interrupt Edge Select Register (PTBES)
- 6.6.3 Port C Registers
- 6.6.1 Port A Registers
- Chapter 7 Central Processor Unit (S08CPUV2)
- 7.1 Introduction
- 7.2 Programmer’s Model and CPU Registers
- 7.3 Addressing Modes
- 7.4 Special Operations
- 7.5 HCS08 Instruction Set Summary
- Chapter 8 Analog Comparator 5-V (S08ACMPV2)
- Chapter 9 Analog-to-Digital Converter (S08ADCV1)
- 9.1 Introduction
- 9.2 External Signal Description
- 9.3 Register Definition
- 9.3.1 Status and Control Register 1 (ADCSC1)
- 9.3.2 Status and Control Register 2 (ADCSC2)
- 9.3.3 Data Result High Register (ADCRH)
- 9.3.4 Data Result Low Register (ADCRL)
- 9.3.5 Compare Value High Register (ADCCVH)
- 9.3.6 Compare Value Low Register (ADCCVL)
- 9.3.7 Configuration Register (ADCCFG)
- 9.3.8 Pin Control 1 Register (APCTL1)
- 9.3.9 Pin Control 2 Register (APCTL2)
- 9.3.10 Pin Control 3 Register (APCTL3)
- 9.4 Functional Description
- 9.5 Initialization Information
- 9.6 Application Information
- Chapter 10 Internal Clock Source (S08ICSV2)
- 10.1 Introduction
- 10.2 External Signal Description
- 10.3 Register Definition
- 10.4 Functional Description
- Chapter 11 Inter-Integrated Circuit (S08IICV2)
- Chapter 12 Modulo Timer (S08MTIMV1)
- Chapter 13 Real-Time Counter (S08RTCV1)
- Chapter 14 Serial Communications Interface (S08SCIV4)
- Chapter 15 Serial Peripheral Interface (S08SPIV3)
- Chapter 16 Timer Pulse-Width Modulator (S08TPMV3)
- Chapter 17 Development Support
- 17.1 Introduction
- 17.2 Background Debug Controller (BDC)
- 17.3 On-Chip Debug System (DBG)
- 17.4 Register Definition
- 17.4.1 BDC Registers and Control Bits
- 17.4.2 System Background Debug Force Reset Register (SBDFR)
- 17.4.3 DBG Registers and Control Bits
- 17.4.3.1 Debug Comparator A High Register (DBGCAH)
- 17.4.3.2 Debug Comparator A Low Register (DBGCAL)
- 17.4.3.3 Debug Comparator B High Register (DBGCBH)
- 17.4.3.4 Debug Comparator B Low Register (DBGCBL)
- 17.4.3.5 Debug FIFO High Register (DBGFH)
- 17.4.3.6 Debug FIFO Low Register (DBGFL)
- 17.4.3.7 Debug Control Register (DBGC)
- 17.4.3.8 Debug Trigger Register (DBGT)
- 17.4.3.9 Debug Status Register (DBGS)
- Appendix A Electrical Characteristics
- A.1 Introduction
- A.2 Parameter Classification
- A.3 Absolute Maximum Ratings
- A.4 Thermal Characteristics
- A.5 ESD Protection and Latch-Up Immunity
- A.6 DC Characteristics
- A.7 Supply Current Characteristics
- A.8 External Oscillator (XOSC) Characteristics
- A.9 Internal Clock Source (ICS) Characteristics
- A.10 Analog Comparator (ACMP) Electricals
- A.11 ADC Characteristics
- A.12 AC Characteristics
- A.13 FLASH Specifications
- A.14 EMC Performance
- Appendix B Ordering Information and Mechanical Drawings
Chapter 16 Timer/PWM Module (S08TPMV3)
MC9S08SH8 MCU Series Data Sheet, Rev. 3
Freescale Semiconductor 263
In this mode and if (CLKSB:CLKSA not = 0:0), the TPM v3 updates the TPMxCnVH:L
registers with the value of their write buffer at the next change of the TPM counter (end of the
prescaler counting) after the second byte is written. Instead, the TPM v2 always updates these
registers when their second byte is written.
The following procedure can be used in the TPM v3 to verify if the TPMxCnVH:L registers
were updated with the new value that was written to these registers (value in their write buffer).
...
write the new value to TPMxCnVH:L;
read TPMxCnVH and TPMxCnVL registers;
while (the read value of TPMxCnVH:L is different from the new value written to
TPMxCnVH:L)
begin
read again TPMxCnVH and TPMxCnVL;
end
...
In this point, the TPMxCnVH:L registers were updated, so the program can continue and, for
example, write to TPMxC0SC without cancelling the previous write to TPMxCnVH:L
registers.
— Edge-Aligned PWM (Section 16.4.2.3, “Edge-Aligned PWM Mode)
In this mode and if (CLKSB:CLKSA not = 00), the TPM v3 updates the TPMxCnVH:L
registers with the value of their write buffer after that the both bytes were written and when the
TPM counter changes from (TPMxMODH:L - 1) to (TPMxMODH:L). If the TPM counter is
a free-running counter, then this update is made when the TPM counter changes from $FFFE
to $FFFF. Instead, the TPM v2 makes this update after that the both bytes were written and
when the TPM counter changes from TPMxMODH:L to $0000.
— Center-Aligned PWM (Section 16.4.2.4, “Center-Aligned PWM Mode)
In this mode and if (CLKSB:CLKSA not = 00), the TPM v3 updates the TPMxCnVH:L
registers with the value of their write buffer after that the both bytes were written and when the
TPM counter changes from (TPMxMODH:L - 1) to (TPMxMODH:L). If the TPM counter is
a free-running counter, then this update is made when the TPM counter changes from $FFFE
to $FFFF. Instead, the TPM v2 makes this update after that the both bytes were written and
when the TPM counter changes from TPMxMODH:L to (TPMxMODH:L - 1).
5. Center-Aligned PWM (Section 16.4.2.4, “Center-Aligned PWM Mode)
— TPMxCnVH:L = TPMxMODH:L [SE110-TPM case 1]
In this case, the TPM v3 produces 100% duty cycle. Instead, the TPM v2 produces 0% duty
cycle.
— TPMxCnVH:L = (TPMxMODH:L - 1) [SE110-TPM case 2]
In this case, the TPM v3 produces almost 100% duty cycle. Instead, the TPM v2 produces 0%
duty cycle.
— TPMxCnVH:L is changed from 0x0000 to a non-zero value [SE110-TPM case 3 and 5]
