Information

write 1 to TRIG0 bit
system clock
synchronized trigger_0
trigger 0 event
Note
TRIG0 bit
trigger_0 input
by system clock
All hardware trigger inputs have the same behavior.
Figure 35-164. Hardware trigger event with HWTRIGMODE = 0
If HWTRIGMODE = 1, then the TRIGn bit is only cleared when 0 is written to it.
NOTE
The HWTRIGMODE bit must be 1 only with enhanced PWM
synchronization (SYNCMODE = 1).
35.4.11.2 Software trigger
A software trigger event occurs when 1 is written to the SYNC[SWSYNC] bit. The
SWSYNC bit is cleared when 0 is written to it or when the PWM synchronization,
initiated by the software event, is completed.
If another software trigger event occurs (by writing another 1 to the SWSYNC bit) at the
same time the PWM synchronization initiated by the previous software trigger event is
ending, a new PWM synchronization is started and the SWSYNC bit remains equal to 1.
If SYNCMODE = 0 then the SWSYNC bit is also cleared by FTM according to
PWMSYNC and REINIT bits. In this case if (PWMSYNC = 1) or (PWMSYNC = 0 and
REINIT = 0) then SWSYNC bit is cleared at the next selected loading point after that the
software trigger event occurred; see Boundary cycle and loading points and the following
figure. If (PWMSYNC = 0) and (REINIT = 1) then SWSYNC bit is cleared when the
software trigger event occurs.
If SYNCMODE = 1 then the SWSYNC bit is also cleared by FTM according to the
SWRSTCNT bit. If SWRSTCNT = 0 then SWSYNC bit is cleared at the next selected
loading point after that the software trigger event occurred; see the following figure. If
SWRSTCNT = 1 then SWSYNC bit is cleared when the software trigger event occurs.
Functional description
K20 Sub-Family Reference Manual, Rev. 2, Feb 2012
768 Freescale Semiconductor, Inc.