MC34071,2,4,A MC33071,2,4,A Single Supply 3.0 V to 44 V Operational Amplifiers Quality bipolar fabrication with innovative design concepts are employed for the MC33071/72/74, MC34071/72/74 series of monolithic operational amplifiers. This series of operational amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/µs slew rate and fast settling time without the use of JFET device technology.
MC34071,2,4,A MC33071,2,4,A PIN CONNECTIONS CASE 646/CASE 751A/CASE 948G CASE 626/CASE 751 Offset Null Inputs VEE 1 8 NC 2 - 7 VCC 3 + 6 Output 5 Offset Null 4 Output 1 Inputs 1 1 8 2 Inputs 1 VEE 7 + 3 + VCC 4 Inputs 2 VCC Output 2 6 5 14 2 13 + 3 (Single, Top View) Output 1 1 Output 2 4 1 + 12 4 11 5 + - 6 2 3 10 + - 9 7 8 Inputs 2 Output 4 Inputs 4 VEE Inputs 3 Output 3 (Quad, Top View) (Dual, Top View) VCC Q3 Q1 Q4 Q6 Q5 Q7 Q17 Q2 R1 Bias
MC34071,2,4,A MC33071,2,4,A ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, RL = connected to ground, unless otherwise noted. See Note 3 for TA = Tlow to Thigh) A Suffix Characteristics Symbol Input Offset Voltage (RS = 100 Ω, VCM = 0 V, VO = 0 V) VCC = +15 V, VEE = –15 V, TA = +25°C VCC = +5.
MC34071,2,4,A MC33071,2,4,A AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, RL = connected to ground. TA = +25°C, unless otherwise noted.) A Suffix Characteristics Symbol Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 500 pF) AV = +1.0 AV = –1.0 Non–Suffix Min Typ Max Min Typ Max 8.0 – 10 13 – – 8.0 – 10 13 – – – – 1.1 2.2 – – – – 1.1 2.2 – – GBW 3.5 4.5 – 3.5 4.5 – MHz BW – 160 – – 160 – kHz – – 60 40 – – – – 60 40 – – – – 12 4.0 – – – – 12 4.
V IO INPUT OFFSET VOLTAGE (mV) V , 2400 2000 1600 8 & 14 Pin Plastic Pkg SO-14 Pkg 1200 800 400 0 0 20 40 60 80 100 120 140 160 -55 -25 0 25 50 75 100 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 4. Maximum Power Dissipation versus Temperature for Package Types Figure 5. Input Offset Voltage versus Temperature for Representative Units VCC VCC VCC/VEE = +1.5 V/ -1.5 V to +22 V/ -22 V VCC -0.8 VCC -1.6 VCC -2.4 VEE +0.
VCC/VEE = +5.0 V/ -5.0 V to +22 V/ -22 V TA = 25°C VCC VCC -1.0 Source VCC -2.0 VEE +1.0 Sink VEE VCC-2.0 0 5.0 10 15 0.1 Gnd 0 100 20 100 k Figure 10. Single Supply Output Saturation versus Load Resistance to VCC Figure 11. Split Supply Output Saturation versus Load Current I , SC OUTPUT CURRENT (mA) VCC 2.0 VCC = +15 V RL to VCC TA = 25°C 1.0 Gnd 100 Z , Ω O OUTPUT IMPEDANCE ( ) 10 k RL, LOAD RESISTANCE TO GROUND (Ω) -0.8 30 1.0 k IL, LOAD CURRENT (±mA) 60 -0.
MC34071,2,4,A MC33071,2,4,A THD, TOTAL HARMONIC DISTORTION (%) AV = 1000 0.3 VCC = +15 V VEE = -15 V VO = 2.0 Vpp RL = 2.0 k TA = 25°C 0.2 AV = 100 0.1 AV = 10 10 100 1.0 k 10 k 108 AV = 1000 2.0 AV = 100 1.0 AV = 10 AV = 1.0 0 0 4.0 20 100 VCC = +15 V VEE = -15 V VO= -10 V to +10 V RL = 10 k f ≤ 10Hz -25 0 25 50 75 100 125 0 80 40 20 0 1.0 120 140 -10 1. Phase RL = 2.0 k 2. Phase RL = 2.0 k, CL = 300 pF -20 3. Gain RL = 2.0 k 4. Gain RL = 2.
MC34071,2,4,A MC33071,2,4,A 70 VCC = +15 V VEE = -15 V RL = 2.0 k VO = -10 V to +10 V TA = 25°C 80 60 φ m , PHASE MARGIN (DEGREES) 40 20 0 10 100 1.0 k VCC = +15 V VEE = -15 V AV = +1.0 RL = 2.0 k to VO = -10 V to +10 V TA = 25°C 60 50 40 30 20 10 0 10 10 k 100 CL, LOAD CAPACITANCE (pF) Figure 23. Phase Margin versus Load Capacitance 14 80 A , m GAIN MARGIN (dB) 10 8.0 φ m , PHASE MARGIN (DEGREES) VCC = +15 V VEE = -15 V AV = +1.0 RL = 2.0 k to ∞ VO = -10 V to +10 V TA = 25°C 12 6.0 4.
MC34071,2,4,A MC33071,2,4,A ∆ V , O OUTPUT VOLTAGE SWING FROM 0 V (V) SR, SLEW RATE (NORMALIZED) 1.15 VCC = +15 V VEE = -15 V AV = +1.0 RL = 2.0 k CL = 500 pF 1.1 1.05 1.0 0.95 10 5.0 0.85 -55 -25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) -10 Compensated Uncompensated 0 1.0 mV 0.5 1.0 1.5 VCC = +15 V VEE = -15 V AV = +1.0 RL = 2.0 k CL = 300 pF TA = 25°C 0 100 VCC = +15 V VEE = -15 V VCM = 0 V ∆VCM = ±1.5 V TA = 25°C 60 ADM ∆VCM 20 ∆VCM CMR = 20 Log 0 0.1 1.
MC34071,2,4,A MC33071,2,4,A 105 TA = -55°C 8.0 7.0 TA = 25°C 6.0 TA = 125°C 5.0 4.0 0 5.0 10 15 20 25 85 +PSR = 20 Log 75 -PSR = 20 Log 65 -55 -25 0 ∆VO/ADM ADM ∆VCC ∆VO + ∆VO/ADM ∆VEE ∆VEE 25 ∆VCC 50 75 100 Figure 35. Power Supply Rejection versus Temperature VCC = +15 V VEE = -15 V TA = 25°C 40 20 10 +PSR (∆VCC = +1.5 V) Figure 34.
MC34071,2,4,A MC33071,2,4,A minimum current sink capability, typically to an output voltage of (VEE +1.8 V). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications. In addition, the all NPN transistor output stage is inherently fast, contributing to the bipolar amplifier’s high gain bandwidth product and fast settling capability. The associated high frequency low output impedance (30 Ω typ @ 1.
MC34071,2,4,A MC33071,2,4,A (Typical Single Supply Applications VCC = 5.0 V) VCC 5.1 M VO 0 3.7 Vpp 0 VCC 20 k 100 k 1.0 M Cin CO + VO MC34071 36.6 mVpp 68 k Cin 100 k Vin 1.0 k 10 k RL AV = 101 MC34071 - VO CO 10 k RL 100 k AV = 10 BW (-3.0 dB) = 450 kHz Figure 38. AC Coupled Noninverting Amplifier Figure 39. AC Coupled Inverting Amplifier VCC 4.75 Vpp 2.63 V + 10 k Vin 370 mVpp BW (-3.0 dB) = 45 kHz VO 3.7 Vpp 91 k 5.1 k RL 5.1 k 2.5 V + VO MC34071 100 k - 0 1.
MC34071,2,4,A MC33071,2,4,A Vin CF 2.0 V RF 5.0 k 5.0 k 5.0 k Vin - VO MC34071 10 k 10 k + 10 k VO + MC34071 - VCC 1.0 V t 2.0 k RL VO 0.2 µs Delay 4.0 V Bit Switches 13 V/µs (R-2R) Ladder Network 25 V/µs 0.1 t Delay 1.0 µs Settling Time 1.0 µs (8-Bits, 1/2 LSB) Figure 44. Low Voltage Fast D/A Converter VCC Figure 45. High Speed Low Voltage Comparator ON" Vin < Vref VCC VCC + Vin RL MC34071 - Vref + + MC34071 MC34071 - - ON" Vin > Vref RL (A) PNP Figure 46.
MC34071,2,4,A MC33071,2,4,A Hysteresis VO R2 Vref R1 VOH + MC34071 - Vin VinL = R1 (VOL-Vref)+Vref R1+R2 VinH = R1 (VOH-Vref)+Vref R1+R2 VH = R1 (VOH -VOL) R1+R Iout VOL VinL VinH Vref Vin Vin - Iout = Figure 50. Low Input Voltage Comparator with Hysteresis R1 R2 +Vref - 1/2 MC34072 + R VO R - + +V2 For (V2 ≥ V1), V > 0 Figure 52. High Input Impedance Differential Amplifier VO = Vref 2R2 (VO ≥ 0.1 V) 0.85 RC + IB V VO = Vin (pk) MC34071 ∆R RF Figure 53.
MC34071,2,4,A MC33071,2,4,A GENERAL ADDITIONAL APPLICATIONS INFORMATION VS = ±15.0 V C2 0.02 R1 560 C2 0.05 - R2 5.6 k R3 510 C1 1.0 MC34071 C1 0.44 R1 46.1 k C1 1.0 fo = 1.0 kHz Ho = 10 + MC34071 R2 1.1 k Then: R1 = Choose: fo, Ho, C1 Choose: fo, Ho, C2 Then: C1 = 2C2 (Ho+1) R2 = 2 R3 = 4πfoC2 R2 Ho+1 R1 = R2 = R2 Ho C2 = Figure 56. Second Order Low–Pass Active Filter fo = 100 Hz Ho = 20 + Ho+0.5 πfoC1 2 2 2πfoC1 (1/Ho+2) C Ho Figure 57.
MC34071,2,4,A MC33071,2,4,A + R R MC34074 R VO MC34074 RE + R - R MC34074 + Example: Let: R = RE = 12 k Then: AV = 3.0 BW = 1.5 MHz R AV = 1 + 2 R RE Figure 62. High Impedance Differential Amplifier +VO + + MC34074 100 k - 10 + 10 RL +10 MC34074 + 220 pF -10 100 k + + RL +VO -VO ∞ 18.93 -18.78 10 k 5.0 k 18 15.4 -18 -15.4 + MC34074 100 k - 10 RL 10 -VO Figure 63. Dual Voltage Doubler http://onsemi.
MC34071,2,4,A MC33071,2,4,A ORDERING INFORMATION Op Amp Function Single Dual Quad Device Operating Temperature Range Package Shipping TA = 0° to +70°C DIP–8 SO–8 SO–8 / Tape & Reel 50 Units / Rail 98 Units / Rail 2500 Units / Tape & Reel MC33071P, MC33071AP MC33071D, MC33071AD MC33071DR2, MC33071ADR2 TA = –40° to +85°C DIP–8 SO–8 SO–8 / Tape & Reel 50 Units / Rail 98 Units / Rail 2500 Units / Tape & Reel MC34072P, MC34072AP MC34072D, MC34072AD MC34072DR2, MC34072ADR2 TA = 0° to +70°C DIP–8 S
MC34071,2,4,A MC33071,2,4,A MARKING DIAGRAMS PDIP–8 P SUFFIX CASE 626 8 8 MC3x071P AWL YYWW 8 MC3x071AP AWL YYWW 1 1 8 MC3x072P AWL YYWW 1 8 MC3x072AP AWL YYWW MC34072VP AWL YYWW 1 1 8 8 SO–8 D SUFFIX CASE 751 8 8 8 3x071 ALYWA 3x071 ALYW 1 1 3x072 ALYWA 3x072 ALYW 3x072 ALYWV 1 1 1 PDIP–14 P SUFFIX CASE 646 14 14 MC3x074P AWLYYWW 1 14 MC3x074AP AWLYYWW 1 MC34074VP AWLYYWW 1 SO–14 D SUFFIX CASE 751A 14 14 1 14 14 MC3x074AD AWLYWW MC3x074D AWLYWW 1 TSSOP–14 DTB SUFFIX CA
MC34071,2,4,A MC33071,2,4,A PACKAGE DIMENSIONS PDIP–8 P SUFFIX CASE 626–05 ISSUE L 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 –B– 1 4 DIM A B C D F G H J K L M N F –A– NOTE 2 L C J –T– MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --10 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.
MC34071,2,4,A MC33071,2,4,A PACKAGE DIMENSIONS PDIP–14 P SUFFIX CASE 646–06 ISSUE M 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F DIM A B C D F G H J K L M N L N C –T– SEATING PLANE J K H D 14 PL G M 0.13 (0.005) INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.
MC34071,2,4,A MC33071,2,4,A PACKAGE DIMENSIONS TSSOP–14 DTB SUFFIX CASE 948G–01 ISSUE O 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
MC34071,2,4,A MC33071,2,4,A Notes http://onsemi.
MC34071,2,4,A MC33071,2,4,A Notes http://onsemi.
MC34071,2,4,A MC33071,2,4,A ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein.