NCL30082 Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back The NCL30082 is a PWM current mode controller targeting isolated flyback and non−isolated constant current topologies. The controller operates in a quasi−resonant mode to provide high efficiency. Thanks to a novel control method, the device is able to precisely regulate a constant LED current from the primary side.
NCL30082 . . Aux . VDIM 1 8 2 7 3 6 4 5 Figure 1. Typical Application Schematic for NCL30082 Table 1. PIN FUNCTION DESCRIPTION Pin No Pin Name Function Pin Description 1 SD Thermal Fold−back and shutdown Connecting an NTC to this pin allows reducing the output current down to 50% of its fixed value before stopping the controller.
NCL30082 CS_shorted Enable Over Voltage Protection Aux_SCP Fault Management Over Temperature Protection SD Thermal Foldback Internal Thermal Shutdown VTF CS VCC Clamp Circuit Valley Selection S Aux_SCP offset_OK Leading Edge Blanking VCC Over Voltage Protection offset_OK Aux. Winding Short Circuit Prot.
NCL30082 Table 2. MAXIMUM RATINGS TABLE Symbol Rating Value Unit VCC(MAX) ICC(MAX) Maximum Power Supply voltage, VCC pin, continuous voltage Maximum current for VCC pin −0.3, +35 Internally limited V mA VDRV(MAX) IDRV(MAX) Maximum driver pin voltage, DRV pin, continuous voltage Maximum current for DRV pin −0.3, VDRV (Note 1) −500, +800 V mA VMAX IMAX Maximum voltage on low power pins (except pins ZCD, DIM, DRV and VCC) Current range for low power pins (except pins ZCD, DRV and VCC) −0.3, +5.
NCL30082 Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values TJ = 25°C, VCC = 12 V; For min/max values TJ = −40°C to +125°C, Max TJ = 150°C, VCC = 12 V) Description Test Condition Symbol Min Typ Max Unit VCC increasing VCC decreasing VCC decreasing VCC(on) VCC(off) VCC(HYS) VCC(reset) 16 8.2 8 3.5 18 8.8 – 4.5 20 9.4 – 5.
NCL30082 Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values TJ = 25°C, VCC = 12 V; For min/max values TJ = −40°C to +125°C, Max TJ = 150°C, VCC = 12 V) Description Test Condition Symbol Min Typ Max Unit ZCD threshold voltage VZCD increasing VZCD(THI) 25 45 65 mV ZCD threshold voltage (Note 4) VZCD decreasing VZCD(THD) 5 25 45 mV ZCD hysteresis (Note 4) VZCD increasing VZCD(HYS) 10 – – mV VZCD(short) 0.8 1 1.
NCL30082 Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values TJ = 25°C, VCC = 12 V; For min/max values TJ = −40°C to +125°C, Max TJ = 150°C, VCC = 12 V) Description Test Condition Symbol Min Typ Max Unit DIM pin voltage for zero output current (OFF voltage) VDIM(EN) 0.66 0.7 0.74 V DIM pin voltage for maximum output current VDIM100 2.25 2.45 2.65 V Dimming range VDIM(range) – 1.75 – V Clamping voltage for DIM pin VDIM(CLP) – 7.
NCL30082 TYPICAL CHARACTERISTICS 8.90 18.15 8.85 18.10 8.80 VCC(off) (V) VCC(on) (V) 18.20 18.05 8.75 18.00 8.70 17.95 8.65 17.90 −40 −20 0 20 40 60 80 8.60 −40 120 100 −20 0 20 40 60 80 100 120 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 3. VCC(on) vs. Junction Temperature Figure 4. VCC(off) vs. Junction Temperature 27.80 18 17 27.75 16 VCC(OVP) (V) ICC(start) (mA) 27.70 27.65 27.60 15 14 13 12 27.55 11 27.
NCL30082 TYPICAL CHARACTERISTICS 2.40 2.85 2.80 2.35 2.75 ICC3 (mA) ICC2 (mA) 2.30 2.25 2.20 2.70 2.65 2.60 2.55 2.15 2.10 −40 2.50 −20 0 20 40 60 80 100 2.45 −40 120 0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 9. ICC2 vs. Junction Temperature Figure 10. ICC3 vs. Junction Temperature 1.495 0.995 1.490 VILIM (V) VCS(stop) (V) 1.000 0.990 0.985 0.980 −40 −20 120 1.485 1.480 −20 0 20 40 60 80 100 1.
NCL30082 TYPICAL CHARACTERISTICS 3.20 7.1 7.0 6.9 tTIMO (ms) tBLANK (ms) 3.15 3.10 6.8 6.7 3.05 6.6 −20 0 20 40 60 80 6.5 −40 120 100 0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C) Figure 15. tBLANK vs. Junction Temperature Figure 16. tTIMO vs. Junction Temperature 255 55.0 254 54.5 253 54.0 252 251 250 249 −40 53.5 53.0 −20 0 20 40 60 80 100 52.0 −40 120 −20 0 20 40 60 80 100 120 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 17.
NCL30082 TYPICAL CHARACTERISTICS 49.0 2.400 48.5 2.395 47.5 2.390 47.0 VHL (V) VREF(on) (mV) 48.0 46.5 46.0 2.385 2.380 45.5 45.0 2.375 44.5 44.0 −40 −20 0 20 40 60 80 100 2.370 −40 120 −20 0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 21. VREF(on) vs. Junction Temperature Figure 22. VHL vs. Junction Temperature 120 28.0 2.300 2.295 27.5 tHL(BLANK) (ms) VLL (V) 2.290 2.285 2.280 27.0 26.5 2.275 −20 0 20 40 60 80 100 26.
NCL30082 TYPICAL CHARACTERISTICS 124.5 135 VVLY4−2/5−3 (mV) 136 VVLY2−4/3−5 (mV) 125.0 124.0 123.5 123.0 122.5 −20 0 20 40 60 80 100 132 130 −40 120 20 40 60 80 100 Figure 27. VVLY2−4/3−5 vs. Junction Temperature Figure 28. VVLY4−2/5−3 vs. Junction Temperature 87 75.5 86 75.0 74.5 74.0 120 85 84 83 82 81 −20 0 20 40 60 80 100 80 −40 120 −20 0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 29. VVLY4−7/5−8 vs.
NCL30082 TYPICAL CHARACTERISTICS 15.05 20.5 15.00 20.0 VVLY13−11/15−12 (mV) 21.0 VVLY11−13/12−15 (mV) 15.10 14.95 14.90 14.85 14.80 19.0 18.5 18.0 17.5 14.75 14.70 −40 −20 0 20 40 60 80 100 17.0 −40 120 −20 0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 33. VVLY11−13/12−15 vs. Junction Temperature Figure 34. VVLY13−11/15−12 vs. Junction Temperature 0.710 2.46 0.705 2.45 VDIM(100) (V) VDIM(EN) (V) 19.5 0.700 0.695 120 2.44 2.
NCL30082 TYPICAL CHARACTERISTICS 2.500 86.5 2.495 86.0 85.5 VOVP (V) IOTP(ref) (mA) 2.490 2.485 2.480 85.0 84.5 84.0 2.475 83.5 2.470 −40 −20 0 20 40 60 80 100 83.0 −40 120 −20 0 20 40 60 80 100 120 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 39. VOVP vs. Junction Temperature Figure 40. IOTP(ref) vs. Junction Temperature 0.690 0.688 0.995 VTF(start) (V) VOTP(on), VTF(stop) (V) 0.997 0.686 0.684 0.991 0.989 0.682 0.987 0.
NCL30082 TYPICAL CHARACTERISTICS 56.0 tBO(BLANK) (ms) 55.5 55.0 54.5 54.0 53.5 53.0 52.5 −40 −20 0 20 40 60 80 100 120 TJ, JUNCTION TEMPERATURE (°C) Figure 45. tBO(BLANK) vs. Junction Temperature APPLICATION INFORMATION The NCL30082 implements a current−mode architecture operating in quasi−resonant mode.
NCL30082 Constant Current Control Figure 47 portrays the primary and secondary current of a flyback converter in discontinuous conduction mode (DCM). Figure 46 shows the basic circuit of a flyback converter. Transformer Vbulk Lleak Cclp Nsp Rclp Vout . Lp . Clamping network DRV Clump Rsense Figure 46. Basic Flyback Converter Schematic When the diode conducts, the secondary current decreases linearly from ID,pk to zero.
NCL30082 IL,pk NspID,pk Ipri(t) Isec(t) time t1 t2 ton tdemag Vaux(t) time Figure 47. Flyback Currents and Auxiliary Winding Voltage in DCM Internal Soft−Start At startup or after recovering from a fault, there is a small internal soft−start of 40 ms. In addition, during startup, as the output voltage is zero volts, the demagnetization time is long and the constant current control block will slowly increase the peak current towards its nominal value as the output voltage grows.
NCL30082 16.0 (V) 12.0 1 Vout 2 I out 4 VControl 3 VCS 8.00 4.00 0 800m (A) 600m 400m 200m 0 800m (V) 600m 400m 200m 0 604u 1.47m 2.34m time in seconds 3.21m 4.07m Figure 48. Startup Simulation Showing the Natural Soft−start Cycle−by−Cycle Current Limit Winding and Output Diode Short−Circuit Protection When the current sense voltage exceeds the internal threshold VILIM, the MOSFET is turned off for the rest of the switching cycle (Figure 49).
NCL30082 S CS LEB1 Rsense Vcc management PWMreset VCC − + VCCstop UVLO grand 8_HICC reset Ipkmax − VILIMIT OVP LEB2 aux Vdd latch R + Vcontrol DRV Q Q + STOP WOD_SCP − S VCS(stop) Q Q OVP OFF WOD_SCP latch S Q Q R 8_HICC R grand reset from Fault Management Block Figure 49. Winding Short Circuit Protection, Max.
NCL30082 At startup, when VCC reaches VCC(on), the controller is not allowed to start pulsing for at least 180 ms in order to allow the SD pin voltage to reach its nominal value if a filtering capacitor is connected to the SD pin. This is to avoid flickering of the LED light in case of over temperature. VOVP VCC Vdd noise delay − Dz IOTP(REF) OVP + S SD Q OFF Q OTP_Timer end Rclamp Clamp Vclamp R OTP − NTC noise delay 4−s Timer + VOTP (OTP latched for version A) 0.5 V if OTP low 0.
NCL30082 VCC VCC(on) VCC(off) VCC > VCC(on): DRV pulses restart VCC(reset) VDRV 4−s Timer VSD VSD > VOVP: controller stops switching 4−s timer has elapsed: waiting for VCC > VCC(on) to restart DRV pulses VOVP VSD(clamp) Vout Figure 52. OVP with SD Pin Chronograms http://onsemi.
NCL30082 VCC VCC(on) VCC(off) VCC(reset) VDRV VSD > VTF(stop) and VCC > VCC(on): DRV pulses restart 4−s Timer VSD < VOTP(off): controller stops switching VSD VTF(start) 4−s timer has elapsed but VSD < VTF(stop) ≥ no restart VTF(stop) VOTP(off) Iout Figure 53. Thermal Fold−back / OTP Chronograms PWM or Linear Dimming Detection The pin DIM allows implementing either linear dimming or PWM dimming of the LED light.
NCL30082 VCC Over Voltage Protection (Open LED Protection) In the NCL30082, when the VCC voltage reaches the VCC(OVP) threshold, the controller stops the DRV pulses and the 4−s timer starts counting. The IC re−start pulsing after the 4−s timer has elapsed and when VCC ≥ VCC(on). If no output load is connected to the LED power supply, the controller must be able to safely limit the output voltage excursion. 40.0 V CC(OVP) (V) 30.0 1 V CC V CC(on) 20.0 10.0 VCC(off) 0 40.0 (V) 30.0 2 Vout 20.
NCL30082 Vbulk VIN + LLine HLine 25−ms blanking time − 2.4 V if LLine low 2.3 V if LLine high Figure 56. Line Range Detector Table 4. VALLEY SELECTION VIN pin voltage for valley change Iout value at which the controller changes valley (Iout decreasing) 0 100% 75% 50% 30% 15% 6% 0% 0 −LL− 2.3 V −HL− 1st 2nd 2nd 3rd 4th 5th 7th 8th 11th 12th 13th 15th −LL− 2.4 V −HL− VVIN increases VIN pin voltage for valley change http://onsemi.
NCL30082 Zero Crossing Detection Block the valleys. To avoid such a situation, the NCL30082 features a Time−Out circuit that generates pulses if the voltage on ZCD pin stays below the VZCD(THD) threshold for 6.5 ms. The time−out also acts as a substitute clock for the valley detection and simulates a missing valley in case of too damped free oscillations. The ZCD pin allows detecting when the drain−source voltage of the power MOSFET reaches a valley.
NCL30082 Tblank Time−Out ZCD + VZCD(TH) . Clock − Tblank VZCD(short) + − 90−ms Timer Enable_b S Q Aux_SCP Q R 4−s Timer Figure 58. ZCD Block Schematic Line Feed−Forward Because of the propagation delays, the MOSFET is not turned−off immediately when the current set−point is reached. As a result, the primary peak current is higher than expected and the output current increases.
NCL30082 Brown−out shuts−down if the VIN pin voltage decreases and stays below 0.9 V for 50 ms nominal. Exiting a brown−out condition overrides the hiccup on VCC (VCC does not wait to reach VCC(off)) and the IC immediately goes into startup mode (ICC = ICC(start)). In order to protect the supply against a very low input voltage, the NCL30082 features a brown−out circuit with a fixed ON/OFF threshold.
NCL30082 CS Pin Short Circuit Protection When the MOSFET is on, if the CS voltage stays below VCS(low) after the adaptive blanking timer has elapsed, the controller shuts down and will attempt to restart on the next VCC hiccup. In the NCL30082B1, this protection is disabled. Normally, if the CS pin or the sense resistor is shorted to ground, the Driver will not be able to turn off, leading to potential damage of the power supply.
NCL30082 Reset Timer has finished counting VCC > VCC(on) OVP2 or VCC_OVP BO_NOK high or OTP or TSD or CS_Short Stop 4−s Timer VCC Disch. BO_NOK high or OTP or TSD or CS_Short OVP2 or WOD_SCP or Aux_SCP or VCC_OVP With states: Reset Stop Run VCC Disch.
NCL30082 Reset Timer has finished counting VCC < VCC(reset) 4−s Timer OVP2 or VCC_OVP VCC > VCC(on) OVP2 or VCC_OVP VCC < VCC(off) or BO_NOK ↓ BO_NOK high or TSD or CS_Short Stop VCC Disch. OTP BO_NOK high or TSD or CS_Short Latch Run OTP or WOD_SCP or Aux_SCP With states: Reset Stop Run VCC Disch.
NCL30082 PACKAGE DIMENSIONS Micro8t CASE 846A−02 ISSUE H D HE PIN 1 ID NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.
NCL30082 PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK −X− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.
NCL30082 OPTIONS Controller Output SCP Winding/Output Diode SCP Over Temperature Protection CS Pin Short Protection NCL30082A Latched Latched Latched Yes NCL30082B Auto−recovery Auto−recovery Auto−recovery Yes NCL30082B1 Auto−recovery Auto−recovery Auto−recovery No ORDERING INFORMATION Device Package Marking Package Type Shipping† NCL30082ADMR2G AAC Micro8 (Pb−Free,Halide−Free) 4000 / Tape & Reel NCL30082BDMR2G AAD Micro8 (Pb−Free,Halide−Free) 4000 / Tape & Reel NCL30082B1DMR