C141-E226-01EN MAW3300NC/NP MAW3147NC/NP MAW3073NC/NP HARD DISK DRIVES PRODUCT/MAINTENANCE MANUAL
FOR SAFE OPERATION Handling of This manual This manual contains important information for using this product. Read thoroughly before using the product. Use this product only after thoroughly reading and understanding especially the section “Important Alert Items” in this manual. Keep this manual handy, and keep it carefully. FUJITSU makes every effort to prevent users and bystanders from being injured or from suffering damage to their property. Use the product according to this manual.
REVISION RECORD Edition Date published 01 Revised contents June, 2005 Specification No.
Related Standards Product specifications and functions described in this manual comply with the following ANSI (*1) standards. Document number Title T10/1236D Rev.20 [NCITS.351:2001] SCSI Primary Commands-2 (SPC-2) T10/996D Rev.8c [NCITS.306:1998] SCSI-3 Block Commands (SBC) T10/1157D Rev.24 SCSI Architecture Model-2 (SAM-2) T10/1365D Rev.
PREFACE This manual describes the MAW3300NC/NP, MAW3147NC/NP, and MAW3073NC/NP 3.5 inch SCSI disk drive. This manual details the specifications and functions of the above disk drive, and gives the requirements and procedures for installing it into a host computer system. This manual is written for users who have a basic understanding of SCSI disk drives and their use in computer systems. The MANUAL ORGANIZATION section describes organization and scope of this manual. The need arises, use the other manuals.
CONVENTIONS USED IN THIS MANUAL The MAW3300NC/NP, MAW3147NC/NP, and MAW3073NC/NP disk drives are described as "the hard disk drive (HDD)", "the disk drive" or "the device" in this manual. Decimal number is represented normally. Hexadecimal number is represented as X'17B9', 17B9h or 17B9H. Binary number is represented as "010". CONVENTIONS FOR ALERT MESSAGES This manual uses the following conventions to show the alert messages. An alert message consists of an alert signal and alert statements.
Important Alert Items Important Alert Messages The important alert messages in this manual are as follows: A hazardous situation could result in minor or moderate personal injury if the user does not perform the procedure correctly. This alert signal also indicates that damages to the product or other property may occur if the user does not perform the procedure correctly. Task Specification Alert message Page Data loss The drive adopts Reed-Solomon code for ECC.
Task Installation Alert message Page Damage 1. Be careful of the insertion orientation of the SCSI connectors. With the system in which terminating resistor power is supplied via the SCSI cable, if the power is turned on, the overcurrent protection fuse of the terminating resistor power supplier may be blown or the cable may be burnt if overcurrent protection is not provided. 5-12 When the recommended parts listed in Table 4.2 are used, inserting the cables in the wrong direction can be prevented. 2.
MANUAL ORGANIZATION PRODUCT/ MAINTENANCE MANUAL (This manual) 1. 2. 3. 4. 5. 6. 7. General Description Specifications Data Format Installation Requirements Installation Diagnostics and Maintenance Error Analysis SCSI PHYSICAL INTERFACE SPECIFICATIONS 1. SCSI BUS 2. SCSI MESSAGE 3. ERROR RECOVERY SCSI LOGICAL INTERFACE SPECIFICATIONS 1. 2. 3. 4. 5. 6.
This page is intentionally left blank.
CONTENTS page CHAPTER 1 GENERAL DESCRIPTION ............................................................................1-1 1.1 Standard Features ..............................................................................................................1-2 1.2 Hardware Structure............................................................................................................1-6 1.3 System Configuration ......................................................................................
4.3.2 68-pin connector type 16-bit SCSI model (NP model)......................................................4-13 4.3.3 Cable connector requirements ...........................................................................................4-20 4.3.4 External operator panel (on NP model drives only) ..........................................................4-21 CHAPTER 5 INSTALLATION...............................................................................................5-1 5.
6.3.3 Diagnostic test ...................................................................................................................6-11 6.4 Troubleshooting Procedures..............................................................................................6-12 6.4.1 Outline of troubleshooting procedures ..............................................................................6-12 6.4.2 Troubleshooting with disk drive replacement in the field ............................................
FIGURES Figure 1.1 page NC model drives outer view ...............................................................................................1-6 Figure 1.2 NP model drives outer view ...............................................................................................1-6 Figure 1.3 System configuration ..........................................................................................................1-8 Figure 3.1 Cylinder configuration..........................................
Figure 4.21 Output signal for external LED ........................................................................................4-18 Figure 4.22 SCSI cables connection ....................................................................................................4-19 Figure 4.23 External operator panel circuit example ...........................................................................4-21 Figure 5.1 SCSI bus connections .................................................................
TABLES Table 2.1 page Model names and order numbers........................................................................................2-1 Table 2.2 Function specifications .......................................................................................................2-2 Table 2.3 Environmental/power requirements....................................................................................2-4 Table 2.4 SCSI function specifications....................................................
CHAPTER 1 GENERAL DESCRIPTION 1.1 Standard Features 1.2 Hardware Structure 1.3 System Configuration This chapter describes the feature and configuration of the hard disk drives (HDDs). The drives are high performance large capacity 3.5 inch hard disk drives with an embedded SCSI controller. The drives support the Small Computer System Interface (SCSI) as described in the ANSI SCSI SPI-4 [T10/1365D Rev.10] to the extent described in this manual.
1.1 Standard Features (1) Compactness Since the SCSI controller circuit is embedded in the standard 3.5 inch hard disk drive form factor, the HDD is extremely compact. The HDD can be connected directly to the SCSI bus of the host system. (2) Restriction of Use of Hazardous Substances The amounts of hazardous substances in use in these HDDs have been reduced in accordance with the Restriction of Use of Hazardous Substances (RoHS) Directive recently issued by European Union (EU).
(5) High speed data transfer Such a high data transfer rate on the SCSI bus can be useful with the large capacity buffer in the HDD. • 8-bit SCSI: The data transfer rate on the SCSI bus is 40 MB/s maximum at the synchronous mode. • 16-bit SCSI: The data transfer rate on the SCSI bus is 320 MB/s maximum at the paced transfer synchronous mode. Note: The maximum data transfer rate in asynchronous mode may be limited by the response time of initiator and the length of SCSI bus length.
IMPORTANT When Write cache is enabled, you should ensure that the cashed data is surely flushed to the disk media before you turn off the drive's power. To ensure it, you should issue either the SYNCHRONIZE CASHE command or the STOP UNIT command with specifying “0” to the Immediate bit and then confirm that the command is surely terminated with the GOOD STATUS. (9) Command queuing feature The HDD can queue maximum 128 commands, and optimizes the issuing order of queued commands by the reordering function.
(14) Defective block slipping A logical data block can be reallocated in a physical sequence by slipping the defective data block at formatting. This results in high speed contiguous data block processing without a revolution delay due to defective data block. (15) High speed positioning A rotary voice coil motor achieves fast positioning with high performance access control.
1.2 Hardware Structure An outer view of the HDD is given in Figures 1.1 and 1.2. The HDD has a disk enclosure (DE) and a printed circuit assembly (PCA). The DE includes heads on an actuator and disks on a spindle motor mounted on the DE. The PCA includes a read/write circuit and a controller circuit. 1-6 Figure 1.1 NC model drives outer view Figure 1.
(1) Disks The disks have an outer diameter of 84 mm (3.3 inch) and an inner diameter of 25 mm (0.98 inch). The disks are good for at least 50,000 contact starts and stops. (2) Heads The MR (Magnet - Resistive) of the CSS (contact start/stop) type heads are in contact with the disks when the disks are not rotating, and automatically float when the rotation is started. (3) Spindle motor The disks are rotated by a direct-drive hall-less DC spindle motor.
1.3 System Configuration Figure 1.3 shows the system configuration. The drives are connected to the SCSI bus of host systems and are always operated as target. The drives perform input/output operation as specified by SCSI devices which operate as initiator. SCSI bus HDD HDD (#14) (#15) Figure 1.
(1) SCSI bus configuration Up to eight SCSI devices operating as an initiator or a target can be connected to the SCSI bus for the 8-bit SCSI and up to 16 SCSI devices operating as an initiator or a target can be connected to the SCSI bus for the 16-bit SCSI in any combination. For example, the system can be configured as multi-host system on which multiple host computers that operate as initiator or connected through the SCSI bus.
This page is intentionally left blank.
CHAPTER 2 SPECIFICATIONS 2.1 Hardware Specifications 2.2 SCSI Function Specifications This chapter describes specifications of the HDD and the functional specifications of the SCSI. 2.1 Hardware Specifications 2.1.1 Model name and order number Each model has a different recording capacities and interface connector type when shipped. Table 2.1 lists the model name and order number. The data format can be changed by reinitializing with the user's system. Table 2.
2.1.2 Function specifications Table 2.2 shows the function specifications of the HDD. Table 2.2 Specification Item Formatted capacity/device (*1) Number of disks Number of heads -1 Number of rotations min (rpm) Average latency time Seek time (*3) (Read/Write) Start/stop time (*4) MAW3300NC/NP MAW3147NC/NP MAW3073NC/NP 300.0 GB (*2) 147.0 GB (*2) 73.5 GB (*2) 4 3 1 8 5 2 10,025 ± 0.2% 2.99 ms Track to Track 0.2 ms/0.4 ms Average 4.5 ms/5.0 ms Full stroke 10.0 ms/11.
The formatted capacity can be changed by changing the logical block length and using spare sector space. See Chapter 3 for the further information. The formatted capacity listed in the table is an estimate for 512 bytes per sector.
2.1.3 Environmental specifications Table 2.3 lists environmental and power requirements. Table 2.
(*6) The terminator power pin (SCSI connector) which supplies power to other terminators is not used (See Section 4.3). (*7) High frequency noise (over 20 MHz) is less than 100 mVp-p. 2.1.4 Error rate Errors detected during initialization and replaced by alternate block assignments are not included in the error rate. Data blocks to be accessed should be distributed over the disk medium equally.
(2) Mean Time to Repair (MTTR) MTTR is the average time taken by a well-trained service mechanic to diagnose and repair a drive malfunction. The drive is designed for a MTTR of 30 minutes or less. (3) Service life The service life under suitable conditions and treatment is as follows. The service life is depending on the environment temperature. Therefore, the user must design the system cabinet so that the average DE surface temperature is as low as possible.
2.2 SCSI Function Specifications Table 2.4 shows the SCSI functions provided with the HDD. Table 2.
This page is intentionally left blank.
CHAPTER 3 DATA FORMAT 3.1 Data Space 3.2 Logical Data Block Addressing 3.3 Defect Management This chapter explains data space definition, logical data block addressing, and defect management on the HDD. 3.1 Data Space The HDD manages the entire data storage area divided into the following three data spaces.
Cylinder – 154 to ~ Cylinder – 147 Internal test cylinder ~ Cell 0 Cylinder 0 1 . SA139 • SA0 ~ 0 29 30 . Spare Sectors per Cell 0-0 User Space for Cell 1-0 User space Spare Sectors per Cell 1-0 . m - 28 . System space User Space for Cell 0-0 57 P1 ~ ~ 28 1 Internal test space ~ Cylinder – 143 to ~ Cylinder – 4 Zone ~ (Primary Cylinder 0 - (n - 1)) User Space for Cell P1-0 m Spare Sectors per Cell P1-0 (1) Alternate Cylinder User Space for Cell xx-1 1 . .
(1) User space The user space is a storage area for user data. The data format on the user space (the length of data block and the number of data blocks) can be specified with the MODE SELECT or MODE SELECT EXTENDED command. The user can also specify the number of logical data blocks to be placed in the user space with the MODE SELECT or MODE SELECT EXTENDED command.
The number of spare sectors per cell can be specified from 0 to 240. The default for the spare sectors number is 240. Cell Note: This drive manages alternate spare areas for each cell, which is a set of cylinders. One cell consists of 27 cylinders. Figure 3.2 Spare area in cell An alternate cylinder is used when spare sectors in a cell are used up or 0 is specified as the number of spare sectors in a cell.
3.1.3 Track format (1) Physical sector allocation Figure 3.4 shows the allocation of the physical sectors in a track. The length in bytes of each physical sector and the number of sectors per track vary depending on the logical data block length. The unused area (G4) exists at the end of the track in formats with most logical data block lengths. The interval of the sector pulse (length of the physical sector) is decided by the HDD internal free running clock frequency.
Track skew Head Track skew Head skew Head Leading logical sector in head p+1 Figure 3.5 Track skew/head skew The number of physical sectors (track skew factor and head skew factor) corresponding to the skew time varies depending on the logical data block length because the track skew and the head skew are managed for individual sectors. The HDD automatically determines appropriate values for the track skew factor and the head skew factor according to the specified logical data block length.
(1) Gaps (G1, G2, G3) No pattern is written on the gap field. (2) PLO Sync In this field, pattern X'00' in the specified length in bytes is written. (3) Sync Mark (SM1, SM2) In this field, special pattern in the specified length in bytes is written. This special pattern indicates the beginning of the data field. (4) Data field (DATA1-DATA4) User data is stored in the data field of the sector.
3.1.5 Format capacity The size of the usable area for storing user data on the HDD (format capacity) varies according to the logical data block or the size of the spare sector area. Table 3.1 lists examples of the format capacity when the typical logical data block length and the default spare area are used. The following is the general formula to calculate the format capacity.
(1) Block address of user space The logical data block address number is consecutively assigned to all of the data blocks in the user space starting with 0 to the first data block. The HDD treats sector 0, track 0, and cylinder 0 as the first logical data block. The data block is allocated in ascending order of addresses in the following sequence (refer to Figure 3.5): 1) Logical data blocks are assigned in ascending order of sector number in the same track.
3.3 Defect Management 3.3.1 Defect list Information of the defect location on the disk is managed by the defect list. The following are defect lists which the HDD manages. • P list (Primary defect list): This list consists of defect location information available at the disk drive shipment and is recorded in a system space. The defects in this list are permanent, so the initiator must execute the alternate block allocation using this list when initializing the disk.
The alternate block allocation is executed by the FORMAT UNIT command, the REASSIGN BLOCKS command, or the automatic alternate block allocation. Refer to Chapter 3 “Command Specification” and Subsection 5.3.2 “Auto alternate block allocation processing” of the SCSI Logical Interface Specifications for details of specifications on these commands. The logical data block is allocated to the next physically continued sectors after the above sector slip treatment is made.
: n represents a logical data block number : Defective sector : Unused spare sector Figure 3.7 Alternate block allocation by FORMAT UNIT command During FORMAT UNIT command, alternate block allocation is conducted in following cases: 1) Unrecovered write offtrack condition during a media write 2) Uncorrectable Data Error during a media read (certification) *1 If above errors are detected during FORMAT UNIT command, the HDD allocates the alternate block(s) to the defective data blocks.
(2) Alternate block allocation by REASSIGN BLOCKS command When the REASSIGN BLOCKS command is specified, the alternate block is allocated to the defective logical data block specified by the initiator by means of alternate sector treatment. The alternate block is allocated to unused spare sectors in the alternate cylinder. Figure 3.8 is examples of the alternate block allocation by the REASSIGN BLOCKS command. Example Reassign: Block 16.
• Automatic alternate block allocation at write operation If AWRE flag in the MODE SELECT parameter permits the automatic alternate block allocation, the HDD executes two kinds of automatic alternate processing during WRITE command processing as described below: Type 1 (Reassignment of Uncorrectable Read Error) 1) Commands to be applied WRITE WRITE EXTEND WRITE at executing WRITE AND VERIFY 2) Application requirements When any of the above commands is issued to LBA registered in the uncorrectable error lo
2) Application requirements / processing When WRITE/WRITE EXTENDED command detects any Servo error (e.g. Write offtrack error) and cannot be recovered within pre-determined retry number (specified in Mode Parameter). For the sectors around defective Servo, alternate blocks are allocated and the data of this WRITE commands are re-written.
This page is intentionally left blank.
CHAPTER 4 INSTALLATION REQUIREMENTS 4.1 Mounting Requirements 4.2 Power Supply Requirements 4.3 Connection Requirements This chapter describes the environmental, mounting, power supply, and connection requirements. 4.1 Mounting Requirements 4.1.1 External dimensions Figures 4.1 and 4.2 show the external dimensions of the HDD and the locations of the holes for the HDD mounting screws.
The value marked with (*) indicates the dimension between mounting holes on the bottom face. [Unit: mm] Figure 4.
The value marked with (*) indicates the dimension between mounting holes on the bottom face. [Unit: mm] Figure 4.
4.1.2 Mounting orientations The permissible orientations of the HDD are shown in Figure 4.3, and the tolerance of the angle is ±5° from the horizontal plane. (a) Horizontal –1 (b) Horizontal –2 (c) Vertical –1 (d) Vertical –2 (e) Upright mounting –1 (f) Upright mounting –2 Direction of gravity Figure 4.3 4.1.3 HDD orientations Notes on mounting CAUTION Damage Never remove any labels from the drive or deface them in any way.
(1) Mounting screw Use #6–32UNC. (2) Mounting frame structure Special attention must be given to mount the HDD disk enclosure (DE) as follows. a) Use the frame with an embossed structure, or the like. Mount the HDD with making a gap of 2.5 mm or more between the HDD and the frame of the system. b) As shown in Figure 4.4, the inward projection of the screw from the HDD frame wall at the corner must be 5.0 mm or less. c) Tightening torque of screw must be secured with 0.59N·m (6kgf·cm) ±12%.
4 Holes for mounting screw 3 2 In case of using a center hole, use it in combination with the holes of both ends. 1 Holes for mounting screw Use four holes (No.1 to No.4) to mount. Figure 4.5 (4) Limitation of side-mounting Limitation of bottom-mounting Use all four mounting holes on the bottom face. (5) Environmental temperature Temperature condition at installed in a cabinet is indicated with ambient temperature measured 30 mm from the disk drive.
2 5 1 4 3 Figure 4.6 Surface temperature measurement points (6) Service clearance area The service clearance area, or the sides which must allow access to the HDD for installation or maintenance, is shown in Figure 4.7. [Surface P'] • Setting terminal (NP model only) • External operator panel connector [Surface R] • Hole for mounting screw [Surface P] • Cable connection [Surface Q] • Hole for mounting screw Figure 4.
4.2 Power Supply Requirements (1) Allowable input voltage and current The power supply input voltage measured at the power supply connector pin of the HDD (receiving end) must satisfy the requirement given in Subsection 2.1.3. (For other requirements, see Items (4) and (5) below.) (2) Current waveform (reference) Figure 4.8 shows the spin-up current waveform of +12V DC. MAW3300NC/NP Time (2 sec/div) Time (2 sec/div) Figure 4.
c) In a system which does not use the terminating resistor power supply signal (TERMPWR) on the SCSI bus, the requirements for +5 VDC given in Figure 4.10 must be satisfied between the HDD and the SCSI device with the terminating resistor circuit. SCSI devices with the terminating resistor Figure 4.
(4) Sequential starting of spindle motors After power is turned on to the HDD, a large amount of current flows in the +12V DC line when the spindle motor rotation starts. Therefore, if more than one HDD is used, the spindle motors should be started by the following procedures to prevent overload of the power supply unit. Regarding how to set a spindle motor start control mode, see Subsection 5.3.2. For the NP model drives, the spindle motors should be started sequentially using of the following procedures.
Figure 4.12 AC noise filter (recommended) 4.3 Connection Requirements 4.3.1 SCA2 connector type 16-bit SCSI model (NC model) (1) Connectors Figure 4.13 shows the location of connector on the SCA2 connector type 16-bit SCSI model (NC model). SCSI connector (CN1) (including power supply) Figure 4.
(2) SCSI connector and power supply connector The connector for the SCSI bus is an unshielded SCA-2 connector conforming to SCSI-3 type which has two 40-pin rows spaced 1.27 mm (0.05 inch) apart. The power connector is included in the SCSI connector. Figure 4.14 shows the SCSI connector. See Section B.1 in Appendix B for signal assignments on the connector. For details on the physical/electrical requirements of the interface signals, refer to Sections 1.3 “Physical Requirements” and Section 1.
4.3.2 68-pin connector type 16-bit SCSI model (NP model) (1) Connectors Figures 4.15 show the locations of connectors and terminals on the 68-pin connector type 16-bit SCSI model (NP model). • • • Power supply connector SCSI connector External operator panel connector External operator panel connector (CN2) Power supply connector (CN1) External operator panel connector (CN1) SCSI connector (CN1) Figure 4.15 NP connectors and terminals location (2) SCSI connector and power supply connector a.
Pin 34 2.54mm 2.00mm Pin A1 Pin 1 1.27mm Pin 35 2.00m Pin A2 5.08mm Pin 68 0.40mm 0.40mm 0.635mm Pin 1 1.30mm 1.00mm 5.08mm Figure 4.16 68-pin type 16-bit SCSI interface connector b. Power supply connector Figure 4.17 shows the shape and the terminal arrangement of the output connector of DC power supply. 4 3 2 1 Figure 4.17 Power supply connector (68-pin type 16-bit SCSI) (3) SG terminal The HDD is not provided with an SG terminal (fasten tab) for DC grounding.
Pin Signal A1 –ID0 A2 Fault LED A3 –ID1 A4 ESID A5 –ID2 A6 (Reserved) A7 –ID3 A8 –LED A9 N.C A10 GND A11 +5 V A12 –WTP Figure 4.18 External operator panel connector (CN1) Pin 2 Pin 1 2.0mm Pin 24 2.0mm Pin 23 Figure 4.
(5) External operator panel connector Signals a. 16-bit SCSI –ID3, –ID2, –ID1, –ID0: Input signals (CN1-A1, A3, A5, A7 pin and CN2-02, 04, 06, 08 pin) These signals are used for providing switches to set the SCSI ID of the HDD externally. Figure 4.20 shows the electrical requirements. For the recommended circuit examples, see Subsection 4.3.4. Figure 4.
b. Fault LED: Output signal (CN1-A2 pin) The HDD indicates that the write-protect status is in effect (CN1-A12 is connected to the GND, or the CN2-9 and CN2-10 are short-circuited.) A signal for driving the LED is output. (HDD) 74LS06 or equivalent 150 Ω CN1-A2 IMPORTANT This signal is temporarily driven at the GND level when the micro program reads the SCSI ID immediately after the power supply to the HDD has been switched on (it is possible to set up the SCSI ID by short circuiting CN1-A1 and CN1-A2.
(HDD) Figure 4.21 Output signal for external LED e. –WTP: Input signal (CN1-A12 and CN2-9, 10 pin) By connecting the CN1-A12 and CN2-10 pins to the GND, writing operations into the HDD disc media are set to disable.
(6) Cable connection requirements The requirements for cable connection between the HDD, host system, and power supply unit are given in Figure 4.22. Recommended components for connection are listed in Table 4.2. External operator panel (example) Figure 4.
4.3.3 Cable connector requirements Table 4.2 lists the recommended components cable connection. Table 4.2 Applicable model NC Type SCSI connector (CN1) Recommended components for connection Name Manufacturer 787311-4 Tyco Electronics AMP 71743-1085 Molex Connector DHJ-PAC68-2ANFujikura FG Tyco Electronics SCSI cable (CN1) 5786090-7 AMP UL20528-FRXSignal cable Fujikura 68-P0.
(4) External operator panel (NP model only) The external operator panel is installed only when required for the system. When connection is not required, leave open the following pins in the external operator panel connector of the HDD: Pins 21, 22 and pins 01 through 08 in CN2 and pins A1 through A12 in CN1. 4.3.4 External operator panel (on NP model drives only) A recommended circuit of the external operator panel is shown in Figure 4.23.
IMPORTANT Do not connect the external LED to both CN1 and CN2. Connect it to either of them.
CHAPTER 5 INSTALLATION 5.1 Notes on Handling Drives 5.2 Connections 5.3 Setting Terminals 5.4 Mounting Drives 5.5 Connecting Cables 5.6 Confirming Operations after Installation and Preparation for Use 5.7 Dismounting Drives 5.8 Spare Disk Drive This chapter describes the notes on handling drives, connections, setting switches and plugs, mounting drives, connecting cables, confirming drive operations after installation and preparation for use, and dismounting drives. 5.
(2) Unpackaging a) Use a flat work area. Check that the "This Side Up" sign side is up. Handle the package on soft material such as a rubber mat, not on hard material such as a wooden desk. b) Be careful not to give excess pressure to the internal unit when removing cushions. c) Be careful not to give excess pressure to the PCA and interface connector when removing the drive from the Fcell. d) Never remove any labels from the drive. Never open the disk enclosure for any reason.
5.2 Connections Figure 5.1 shows examples of connection modes between the host system and the HDD. For the 16-bit SCSI, up to 16 devices including the host adapter, the HDD, and other SCSI devices can be connected to the SCSI bus in arbitrary combinations. Install a terminating resistor on the SCSI device connected to both ends of the SCSI cable. See Section 4.3 for the cable connection requirements and power cable connections.
(2) Connecting two drives or more (single host) HDD HDD Figure 5.1 (3) SCSI bus connections (1 of 2) Connecting two drives or more (multi-host) HDD HDD : SCSI terminator Figure 5.
5.3 Setting Terminals A user sets up the following terminals and SCSI terminating resistor before installing the HDD in the system as required. • Setting terminal: CN1 (NC model), CN2 (NP model) Figure 5.2 shows the location of the setting terminal for NP model, and Figure 5.3 shows the allocation and the default settings for NP model. See Figure 4.13 and Table B for NC model because the setting terminal is included in SCSI connector (CN1). CAUTION Data loss 1.
2 4 6 8 10 12 14 16 18 20 22 24 1 3 5 7 9 11 13 15 17 19 21 23 Terminator power supply: Supply (LED signal) (HDD Reset signal) N.C. Force Single Ended: LVD mode Force Narrow: 16-bit SCSI Motor start mode Write protect: enabled SCSI ID #15 Figure 5.3 5.3.1 CN2 setting terminal (on NP models only) SCSI ID setting Table 5.1 shows the SCSI ID setting. For the terminal location and allocation of NC model, see Figure 4.13 and Table B.1. For NP model, see Figure 5.2 and 5.3.
Table 5.
5.3.2 Each mode setting (1) Setting terminator power supply Refer to Table 5.2 for controlling the supply of power from the drive to the SCSI terminator power source (TERMPOW). For information on NP model, refer to Figures 5.2 and 5.3. Table 5.2 Setting SCSI terminator power supply (NP model) Supply on/off of SCSI terminator power from the HDD Pin pair 23/24 of CN2 (TRMPOW/TRMPOW) Supply off Open Supply on Short (*1) *1. Set at factory shipment.
(3) Write protect When the write protect function is enabled on NP model, writing to the disk medium is disabled. Table 5.4 Write protect setting (NP model) Write protect Pin pair 9/10 of CN2 (GND/WTP) Write operation is enabled. Open (*1) Write operation is disable. Short *1. Set at factory shipment. For NC model, the function of the write protect setting is not supported.
5.3.3 Mode settings In addition to the previously described settings using setting terminals, the HDD is provided with several mode settings. The mode settings are enabled by specifying the CHANGE DEFINITION command. Table 5.7 lists the mode settings and their settings at factory shipment. Refer to Subsection 3.1.4 “CHANGE DEFINITION (40)” of the SCSI Logical Interface Specifications for details of the CHANGE DEFINITION command. Table 5.
5.4 Mounting Drives 5.4.1 Check before mounting Reconfirm if the CN2 setting terminal is set correctly according to Table 5.8 before mounting the NP model drives in the system cabinet. For the CN2 setting terminal location, see Section 5.3. The NC model drives do not require the following check. Table 5.8 Setting contents (Check item) No. 1 SCSI ID Setting check list (NP model only) Pin pair on CN2 Check Remarks 1/2 (SCSI ID = __) Upper bus (DB 8 to 15 PI) not connected 3/4 5/6 7/8 5.4.
5.5 Connecting Cables Connect the HDD and system with the following cables. See Section 4.3 for further details of the requirements for the HDD connector positions and connecting cables. • • • Power cable SCSI cable External operator panel cable (if required for NP model) The general procedures and notes on connecting cables are described below. Especially, pay attention to the inserting orientation of each cable connector. CAUTION Damage 1.
5.6 Confirming Operations after Installation and Preparation for Use 5.6.1 Confirming initial operations This section describes the operation check procedures after power is turned on. Since the initial operation of the HDD depends on the setting of the motor start mode, check the initial operation by either of the following procedures.
d) If an error is detected in initial self-diagnosis the LED blinks. In this case, it is recommended to issue the REQUEST SENSE command from the initiator (host system) to obtain information (sense data) for error analysis. IMPORTANT The LED lights during the HDD is executing a command. However, in same commands, the lighting time is only an instant. Therefore, it seems that the LED blinks or the LED remains off. 5.6.
Motor starts when power is turned on d Self test = 1 Unit Of =1 No parameter (60 Figure 5.
Motor starts by START/STOP command * Executing time: about 60 seconds Figure 5.
(2) Checking at abnormal end a) When sense data can be obtained with the REQUEST SENSE command, analyze the sense data and retry recovery for a recoverable error. Refer to Chapter 5 “Sense Data Error Recovery Methods” of the SCSI Logical Interface Specifications for further details. b) Check the following items for the SCSI cable connection: • • • All connectors including other SCSI devices are connected correctly. The terminating resistor is mounted on both ends of the cable.
b. Format parameter (page code = 3) Specify the number of spare sectors for each cell in the "alternate sectors/zone" field. It is recommended not to specify values smaller than the HDD default value in this field. (2) FORMAT UNIT command Initialize entire recording surface of the disk with the FORMAT UNIT command.
5.6.4 Setting parameters The user can specify the optimal operation mode for the user system environments by setting the following parameters with the MODE SELECT or MODE SELECT EXTENDED command: • • • • Error recovery parameter Disconnection/reconnection parameter Caching parameter Control mode parameter With the MODE SELECT or MODE SELECT EXTENDED command, specify 1 for the "SP" bit on CDB to save the specified parameter value on the disk.
5. (1) The saved value of the MODE SELECT parameter is assumed as the initial value of each parameter after the power-on, the RESET condition, or the BUS DEVICE RESET message. The initiator can change the parameter value temporary (actively) at any timing by issuing the MODE SELECT or MODE SELECT EXTENDED command with specifying "0" to the SP bit in the CDB. Error recovery parameter The following parameters are used to control operations such as the HDD internal error recovery: a.
Notes: 1. The user can arbitrarily specify the following parameters according to the system requirements: • • • • 2. (2) ARRE AWRE TB PER The user also can arbitrarily specify parameters other than the above. However, it is recommended to use the default setting in normal operations.
(3) Caching parameters The following parameters are used to optimize the HDD Read-Ahead caching operations under the system environments. Refer to Chapter 2 "Data Buffer Management" of the SCSI Logical Interface Specifications for further details.
a. Control mode parameters Parameter • Queue algorithm modifier 5.7 • QErr: Resume or abort remaining suspended commands after sense pending state • DQue: Disabling tagged command queuing Default value 0 (Execution sequence of read/write commands is optimized.
This page is intentionally left blank.
CHAPTER 6 DIAGNOSTICS AND MAINTENANCE 6.1 Diagnostics 6.2 Maintenance Information 6.3 Operation Check 6.4 Troubleshooting Procedures This chapter describes diagnostics and maintenance information. 6.1 Diagnostics 6.1.1 Self-diagnostics The HDD has the following self-diagnostic function. This function checks the basic operations of the HDD. • • Initial self-diagnostics Online self-diagnostics (SEND DIAGNOSTIC command) Table 6.
Brief test contents of self-diagnostics are as follows. a. Hardware function test This test checks the basic operation of the controller section, and contains following test. • • • • RAM (microcode is stored) Peripheral circuits of microprocessor (MPU) Memory (RAM) Data buffer b. Seek test This test checks the positioning operation of the disk drive using several seek modes (2 points seek, 1 position sequential seek, etc.).
The HDD does not reply to the SCSI bus for up to 2 seconds after the initial self-diagnostics is started.
b. Reporting result of self-diagnostics and error indication When all specified self-diagnostics terminate normally, the HDD posts the GOOD status for the SEND DIAGNOSTIC command. When an error is detected in the self-diagnostics, the HDD terminates the SEND DIAGNOSTIC command with the CHECK CONDITION status. The initiator should issue the REQUEST SENSE command when the CHECK CONDITION status is posted.
(1) Interface (SCSI bus) test The operations of the SCSI bus and data buffer on the HDD are checked with the WRITE BUFFER and READ BUFFER commands. (2) Basic operation test The basic operations of the HDD are checked by executing self-diagnosis with the SEND DIAGNOSTIC command (see Subsection 6.1.1). (3) Random/sequential read test The positioning (seek) operation and read operation are tested in random access and sequential access modes with the READ, READ EXTENDED, or VERIFY command.
CAUTION 1. Always ground yourself with a wrist strap connected to ground before handling. ESD (Electrostatics Discharge) may cause the damage to the device. 2. To prevent electrical damage to the disk drive, turn the power off before connecting or disconnecting a cable, connector, or plug. 3. Do not remove a PCA. 4. Do not use a conductive cleaner to clean a disk drive assembly. 5. Ribbon cables are marked with a colored line.
d) Error contents • • • • Outline of inconvenience Issued commands and specified parameters Sense data Other error analysis information CAUTION Data loss Save data stored on the disk drive to other media before requesting repair. Fujitsu does not assume responsibility if data is destroyed during servicing or repair. See Section 5.1 for notes on packing and handling when returning the disk drive. 6.2.
6.2.4 Revision numbers The revision number of the disk drive is represented with a letter and a number indicated on the label attached on the HDD. Figure 6.1 shows an example of the label. Figure 6.1 (1) Revision label (example) Indicating revision number at factory shipment When the disk drive is shipped from the factory, the revision number is indicated by deleting numbers in the corresponding letter line up to the corresponding number with = (see Figure 6.2).
IMPORTANT When the revision number is changed after the drive is shipped from the factory, Fujitsu issues "Engineering Change Request/Notice" in which the new revision number is indicated. When the user changes the revision number, the user should update the revision label as described in item (2) after applying the modification. At shipment Rev. A2 Revising at field Rev. A3 Figure 6.2 6.2.
Start Start self-test by turning the power on No Test results OK? Check host system (Table 6.
6.3 Operation Check 6.3.1 Initial seek operation check If an error is detected during initialization by the initial seek operation check routine at power-on, the spindle motor of the disk drive stops, and then the disk drive becomes unusable. For an explanation of the operation check before the initial seek, refer to the Section 5.6. 6.3.2 Operation test While the host computer is processing data, the HDD monitors disk drive operation including data processing, command processing, and seek operations.
6.4 Troubleshooting Procedures 6.4.1 Outline of troubleshooting procedures This section explains the troubleshooting procedures for disk drive errors. Depending on the maintenance level, analyze the error to detect a possibly faulty part (disk drive, or disk drive part). Full-scale troubleshooting is usually required if the error cause is not known. If the error cause is clear (e.g., abnormal noise in disk enclosure or burning of the PCA), troubleshooting is straightforward. 6.4.
Table 6.2 Item System-level field troubleshooting Recommended work DC power cable Check that the power cable is correctly connected to the disk drive and power supply unit. DC power level Check that the DC voltage is within the specified range (±5%). Check that +5V DC supply is from 4.75 to 5.25V DC. For NC model, check the voltage between pin 36 and 76 of the SCSI connector. For NP model, check the voltage between pin 3 and 4 of the power connector. Check that +12V DC supply is from 11.4 to 12.6V DC.
6.4.3 Troubleshooting at the repair site For maintenance at this level, we recommend additional testing of the disk drive and signal checking. The sense data posted from the HDD helps with troubleshooting. This sense data makes the error type clear (functional, mechanical, or electrical error). Chapter 7 error analysis by sense data, and gives supplementary information on finding the error cause (faulty part). Table 6.3 lists how to detect a faulty disk drive subassembly.
6.4.4 Troubleshooting with parts replacement in the factory This manual does not cover troubleshooting at the factory level. 6.4.5 Finding possibly faulty parts Finding possibly faulty parts in the field was explained in Subsection 6.4.2. This manual does not cover finding possibly faulty parts at the factory level.
This page is intentionally left blank.
CHAPTER 7 ERROR ANALYSIS 7.1 Error Analysis Information Collection 7.2 Sense Data Analysis This chapter explains in detail how sense data collected from a disk drive is used for troubleshooting. Sense data reflects an error in the disk drive, and helps with troubleshooting. A sense key, additional sense code, and additional sense code qualifier, taken from various sense data are repeated. Also in this chapter, troubleshooting is performed using these three codes.
Bit 7 Byte 0 6 5 Valid 4 3 2 1 0 X‘70’ or X‘71’ (error code) 1 X‘00’ 2 0 0 3 [MSB] ILI 0 Sense key 4 Information 5 6 [LSB] 7 Basic information 8 X‘28’ (additional sense data length) [MSB] 9 Command-specific information 10 11 [LSB] 12 Additional sense code 13 Additional sense code qualifier 14 X‘00’ 15 SKSV 16 Sense key-specific information 17 18 X 0 0 19 Additional information 0 SCSI ID CDB operation code 20 Detail information 47 Figure 7.
7.2 Sense Data Analysis For details of sense data, refer to Chapter 5 “Sense Data Error Recovery Methods” of the SCSI Logical Interface Specifications. 7.2.1 Error information indicated with sense data Subsection 7.2.2 onwards explain troubleshooting using sense data. Table 7.1 lists the definition of sense data. Table 7.1 Definition of sense data Sense data Sense key Additional sense code Additional sense code qualifier 00 00 00 Operation was normal.
7.2.2 Sense data (3-0C-03), (4-40-xx), and (4-C4-xx) Sense data (3-0C-03), (4-40-xx), and (4-C4-xx) indicate one of the following: • A target sector could not be detected using the sector counter. • A seek process overran the specified time. • A write to a disk terminated abnormally. • An error occurred in power-on self-diagnosis. • A drive error occurred. The symptoms above are generally caused by an error in the PCA or the DE. 7.2.
APPENDIX A SETTING TERMINALS A.1 Setting Terminals (on NP model only) This appendix describes setting terminals.
A.1 Setting Terminals (on NP model only) Table A.
APPENDIX B CONNECTOR SIGNAL ALLOCATION B.1 SCSI Connector Signal Allocation: SCA2 type LVD 16-bit SCSI B.2 SCSI Connector Signal Allocation: 68-pin type LVD 16-bit SCSI This appendix describes the connector signal allocation.
B.1 SCSI Connector Signal Allocation: SCA2 type LVD 16-bit SCSI Table B.1 SCSI connector (SCA2 type LVD 16-bit SCSI): CN1 Pin No. Signal Signal Pin No. 01 +12V (Charge) 12V RETURN (GND) 41 02 +12V 12V RETURN (GND) 42 03 +12V 12V RETURN (GND) 43 44 B-2 04 +12V MATED 1 05 Reserved (N.C.) Reserved (N.C.) 45 06 Reserved (N.C.
B.2 SCSI Connector Signal Allocation: 68-pin type LVD 16-bit SCSI Table B.2 SCSI connector (68-pin type LVD 16-bit SCSI): CN1 Pin No. Signal Signal Pin No.
This page is intentionally left blank.
INDEX 16-bit SCSI ID external input........................4-16 16-bit SCSI interface connector ....................4-14 68-pin type LVD 16-bit SCSI ........................ B-3 8-bit SCSI/16-bit SCSI....................................1-2 A AC noise filter ...............................................4-11 actuator............................................................1-7 addressing of peripheral device.......................1-9 air circulation (recirculation filter, breather filter) ...............
F factory maintenance (parts replacement) ........6-7 field maintenance (disk drive replacement) ....6-7 finding possibly faulty part ...........................6-15 format capacity................................................3-8 format of extended sense data .........................7-2 format parameter ...........................................5-18 FORMAT UNIT command ...........................5-18 formatting......................................................5-17 G gaps ...........................
reporting result of self-diagnostic and error indication ...................................................6-4 reserve and release function ............................1-4 restriction of use of hazardous substance ........1-2 revision label ...................................................6-8 revision number...............................................6-8 S SCA2 type LVD 16-bit SCSI ......................... B-2 SCA2 type SCSI connector ...........................4-12 SCSI bus configuration ...........
This page is intentionally left blank.
Comment Form We would appreciate your comments and suggestions regarding this manual. Manual code C141-E226-01EN Manual name MAW3300NC/NP, MAW3147NC/NP, MAW3073NC/NP HARD DISK DRIVES PRODUCT/MAINTENANCE MANUAL Please mark each item: E(Excellent), G(Good), F(Fair), P(Poor). General appearance Technical level Organization Clarity Accuracy ( ( ( ( ( ) ) ) ) ) Illustration Glossary ( Acronyms & Abbreviations Index ( ) ( ( Comments & Suggestions List any errors or suggestions for improvement.
This page is intentionally left blankw.