User manual
  Science Manual – Using Video Images for Fisheries Monitoring  51 
The addition of the IC improves the accuracy and precision of the estimates, but the 
degree to which this happens will depend on the relative magnitudes of the three 
parameters estimated. This model could be greatly improved by calibrating on a 
longer time period, and including river flow as an explanatory variable for counter and 
IC efficiency. 
Robin Wyatt, 26 Mar 2007 
The key part of the model in WinBUGS language is: 
model{ 
 fp.rate~dgamma(0.001,0.001) 
 counter.eff~dbeta(1,1) 
 vid.eff~dbeta(1,1) 
  #c.fp.rate <- cut(fp.rate) 
  #c.counter.eff <- cut(counter.eff) 
  #c.vid.eff <- cut(vid.eff) 
  c.fp.rate <- fp.rate 
  c.counter.eff <- counter.eff 
  c.vid.eff <- vid.eff 
  for (i in 1:4){ 
 false.positive[i] ~ dpois(fp.rate) 
 count.fish[i] ~ dbin(counter.eff, fish[i]) 
    vid[i] ~ dbin(vid.eff, fish[i]) 
 } 
  #mu.p ~dnorm(0.0, 1.0E-5) 
  #sd.p ~ dunif(0,50) 
  #tau.p <- 1/(sd.p*sd.p) 
  #for (j in 1:4){ 
 #Counter only 
 #p.fish[j] ~ dnorm(mu.p, tau.p)I(0,100) 
 #np[j] <- p.fish[j]*c.counter.eff+c.fp.rate 
 #npq[j] <- p.fish[j]*c.counter.eff*(1-c.counter.eff)+c.fp.rate 
 #p[j] <- 1-npq[j]/np[j] 
 #n[j] <- np[j]/p[j] 
 #counter[j] ~ dbin(p[j],n[j]) 
 #Counter + IC 
 #p.fish[j] ~ dnorm(mu.p, tau.p)I(0,100) 
 #np[j] <- p.fish[j]*c.counter.eff+c.fp.rate 
 #npq[j] <- p.fish[j]*c.counter.eff*(1-c.counter.eff)+c.fp.rate 
 #p[j] <- 1-npq[j]/np[j] 
 #n[j] <- np[j]/p[j] 
 #counter[j] ~ dbin(p[j],n[j]) 
 #vid2[j] ~ dbin(c.vid.eff, p.fish[j]) 
 #} 
} 
#Data 
list( 
  fish=c(15, 17, 15, 7), 










