User Manual

WITHOUT FIR FILTER WITH FiRPHASE FILTER
A
B
C
D
E F
Fig.4 A – Impulse Response, no FIR; B – IR after FIR filtering; C – Energy Time Curve plot, no FIR; D – ETC plot after FIR filtering; ,E – Phase plot, no FIR; F – Phase plot after
FIR filtering.
REFERENCES
Alcántara, J. I., Holube, I., & Moore, B. C. (1996). Eects of phase and level on vowel identification: data and predictions based on a nonlinear basilar-membrane model. The Journal of the Acoustical Society of America, 100(4 Pt
1), 2382–92. https://doi.org/10.1121/1.417948
Breebaart, J., Nater, F., & Kohlrausch, A. (2010). Spectral and spatial parameter resolution requirements for parametric, filter-bank-based HRTF processing. AES: Journal of the Audio Engineering Society, 58(3), 126–140.
Chappel, R., Schwerin, B., & Paliwal, K. (2015). Phase distortion resulting in a just noticeable dierence in the perceived quality of speech. Speech Communication, 81, 138–147. https://doi.org/10.1016/j.specom.2016.04.005
Griesinger, D. (2010). Phase coherence as a measure of acoustic quality part 1. Proceedings 20th International ICA, (August), 1–7.
Hopkins, K. (2008). The role of temporal fine structure information in the perception of complex sounds for normal-hearing and hearing-impaired subjects, (November).
Johansen, L. G., & Rubak, P. (1996). The Excess Phase in Loudspeaker / Room Transfer functions: Can it be Ignored in Equalization Tasks? 100th Audio Engineering Society Convention.
Kohlrausch, a, & Sander, A. (1995). Phase eects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets. The Journal of the Acoustical Society of America, 97(3), 1817–1829. https://doi.
org/10.1121/1.413097
Koya, D. (n.d.). Aural Phase Distortion Detection Presented by Daisuke Koya In Fulfillment of the Master’s of Science Thesis Requirement.
Krauss, G. J. (2006). Advantages of FIR Filters in Digital Loudspeaker Controllers. Aes.
Lipshitz, S. P., Pocock, M., & Vanderkooy, J. (1982). On the Audibility of Midrange Phase Distortion in Audio Systems. J. Audio Eng. Soc, 30(9), 580–595. Retrieved from http://www.aes.org/e-lib/browse.cfm?elib=3824
Lokki, T., Pätynen, J., Tervo, S., Siltanen, S., & Savioja, L. (2011). Engaging concert hall acoustics is made up of temporal envelope preserving reflections. The Journal of the Acoustical Society of America, 129(6), EL223-L228. https://
doi.org/10.1121/1.3579145
Mowlaee, P., Saeidi, R., & Stylianou, Y. (2016). Advances in phase-aware signal processing in speech communication. Speech Communication, 81, 1–29. https://doi.org/http://dx.doi.org/10.1016/j.specom.2016.04.002
Plomp, R., & Smoorenburg, G. (1970). Frequency analysis and periodicity detection in hearing. Perception, 1–6. Retrieved from http://scholar.google.com/
scholar?hl=en&btnG=Search&q=intitle:Frequency+Analysis+and+Periodicity+Detection+in+Hearing#0
Pobloth, H., & Kleijn, W. B. (1999). On phase perception in speech. 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), 1, 29–32 vol.1. https://doi.
org/10.1109/ICASSP.1999.758054
Turner, R. S. (1977). The Ohm-Seebeck dispute, Hermann von Helmholtz, and the origins of physiological acoustics. British Journal for the History of Science, 10(34 Pt 1), 1–24. https://doi.org/10.1017/S0007087400015089
Welti, T. (2015). Factors that Influence Listeners’ Preferred Bass and Treble Balance in Headphones.
RCF S.p.A. Via Raaello Sanzio 13 - 42124 Reggio Emilia - Italy www.rcf.it
FiRPHASE White Paper